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Definition
Let k be afield. A Lie algebra L over k is a k-vector space L
together with a bilinear map

[[]:LxL—L

(called the bracket or commutator) satisfying:
Q [x,x]=0forall xin L;

Q [x.ly.z]l + v, [z, X]] + [z,[x,y]] =0 forall x,y, zin L.
(Jacobi identity)

Lie algebras are neither associative nor commutative
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Some Examples

R3 with the Lie bracket given by the cross product of vectors

[x,y] = x x y,forall x,y € R3.
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Example

Let gl(n, k) be the vector space of all n x n matrices over k with
the Lie bracket defined by

[x,y] = xy — yx,

where the multiplication on the right is the usual product of
matrices. )
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Classification of Simple Lie Algebras

@ A Lie algebra is simple if it has no non-trivial ideals and is
not abelian.

@ A Lie algebra is semisimple if it does not contain any
non-zero abelian ideals.

@ In particular, a simple Lie algebra is semisimple.

@ Conversely, it can be proven that any semisimple Lie
algebra is the direct sum of its minimal ideals, which are
canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie
algebra over C is isomorphic to one of the classical Lie

algebras:
sl(n,C),0(n,C),sp(2n,C).
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set of all linear combinations of finitely many elements of G with
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The Group Algebra

Definition

Let G be a group and k a field. The group algebra k[G] is the
set of all linear combinations of finitely many elements of G with
coefficients in k.

The group algebra is a Lie algebra.
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Example

The character table for As is:

ConjugacyClass [1 |2 |3 | 4 | 5
X1 1] 1 1 1 1
X2 3]|-1] 0| 51| A
Xa 3|-1]0 ||
X 4 1] -1 1
X5 51 |1 0

The group As has 5 characters, all of real type, of degrees
1,3,3,4,5. So, £(As) decomposes in the following way:

£(As) = 0(1,C) & 0(3,C) & 0(3,C) & 0(4, C) & o(5, C).
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My project

£(G) is a Lie-subalgebra of k[G] for any field k.

Can we find a similar structure theorem if we take k to be a
finite field instead of C?

@ Classification of Lie algebras over finite fields is MUCH
more complicated.

@ Representations of groups over finite fields is also much
more complex than over an algebraically closed field.
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Method

We define the reduction mod p of the Plesken Lie algebra in
two ways and clash the results against each other, the result
being a fascinating theorem.

@ £(G)F, is the Plesken Lie algebra as a subalgebra of Fy[G]

o £(G)®Fr = (£(G))(Z) ®z Fp, the tensor product of the
Z-span of the Chevalley basis of the complex Lie algebra
£(G) with Fp.
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Important Result

If the Lie algebra L is a direct sum of simple ideals
L=Li®- - -® Ly then

L ®Fp — L?Fp @ ooo @ L?FP.

£(As)®Fp = o(1,Fp) & o(3,Fp) @ o(3,Fp) @ 0(4,Fp) @ o(5,Fp).
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splits completely in the ring of integers of K.
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Main Result

Theorem

If p# 2 and p t #G the Lie algebras £(G)®Fr and £(G)g, are
the same if

@ the splitting field of C[G] is Q, or

@ the splitting field of C[G] is K, an extension of Q and p
splits completely in the ring of integers of K.

The spliting field of C[G] is the smallest field over which the
complex irreducible representations of G can be realized, and
its ring of integers is the collection of all the algegraic integers
in the field.
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Example

The splitting field of C[As] is Q(+/5) whose ring of integers is
Z[V5].
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Example
Letp=11.
@ x2-5=(x+4)(x+7) (mod 11),
@ we get the ideal factorization (11) = (5,v5 + 4)(5,V5 + 7).
@ the prime 11 splits completely in Z[\/5].
@ £(As)k,, is the same as £(As)®Fr.
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Why Most People Do Not Associate With Lie
Algebras
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