A Decomposition Theorem of Plesken Lie Algebras over Finite Fields

Mona Merling

Department of Mathematics Bard College

May 2009

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

Let *k* be a field. A **Lie algebra** *L* over *k* is a *k*-vector space *L* together with a bilinear map

 $[\ ,\]:L\times L\to L$

(called the bracket or commutator) satisfying:

① [x, x] = 0 for all x in L;

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in L. (Jacobi identity)

Lie algebras are neither associative nor commutative

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Definition

Let *k* be a field. A **Lie algebra** *L* over *k* is a *k*-vector space *L* together with a bilinear map

 $[\ ,\]:L\times L\to L$

(called the bracket or commutator) satisfying:

$$[x, x] = 0 \text{ for all } x \text{ in } L;$$

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in L. (Jacobi identity)

Lie algebras are neither associative nor commutative

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Let *k* be a field. A **Lie algebra** *L* over *k* is a *k*-vector space *L* together with a bilinear map

 $[\ ,\]:L\times L\to L$

(called the **bracket** or **commutator**) satisfying:

- (x, x] = 0 for all x in L;
- [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in L. (Jacobi identity)

(日) (日) (日) (日) (日) (日) (日)

Lie algebras are neither associative nor commutative

Definition

Let *k* be a field. A **Lie algebra** *L* over *k* is a *k*-vector space *L* together with a bilinear map

 $[\ ,\]:L\times L\to L$

(called the **bracket** or **commutator**) satisfying:

- (x, x] = 0 for all x in L;
- [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z in L. (Jacobi identity)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Lie algebras are neither associative nor commutative

Some Examples

Example

 \mathbf{R}^3 with the Lie bracket given by the cross product of vectors

$$[x, y] = x \times y$$
, for all $x, y \in \mathbf{R}^3$.

Example

Let $\mathfrak{gl}(n, k)$ be the vector space of all $n \times n$ matrices over k with the Lie bracket defined by

$$[X, Y] = XY - YX,$$

・ロット (雪) (日) (日)

where the multiplication on the right is the usual product of matrices.

Some Examples

Example

 \mathbf{R}^3 with the Lie bracket given by the cross product of vectors

$$[x, y] = x \times y$$
, for all $x, y \in \mathbf{R}^3$.

Example

Let $\mathfrak{gl}(n, k)$ be the vector space of all $n \times n$ matrices over k with the Lie bracket defined by

$$[\mathbf{x},\mathbf{y}]=\mathbf{x}\mathbf{y}-\mathbf{y}\mathbf{x},$$

where the multiplication on the right is the usual product of matrices.

- A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over **C** is isomorphic to one of the **classical Lie algebras**:

- A Lie algebra is simple if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over **C** is isomorphic to one of the **classical Lie algebras**:

- A Lie algebra is simple if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over **C** is isomorphic to one of the **classical Lie algebras**:

- A Lie algebra is simple if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over **C** is isomorphic to one of the **classical Lie algebras**:

- A Lie algebra is **simple** if it has no non-trivial ideals and is not abelian.
- A Lie algebra is **semisimple** if it does not contain any non-zero abelian ideals.
- In particular, a simple Lie algebra is semisimple.
- Conversely, it can be proven that any semisimple Lie algebra is the direct sum of its minimal ideals, which are canonically determined simple Lie algebras.

Classification

With five exceptions, every finite-dimensional simple Lie algebra over **C** is isomorphic to one of the **classical Lie algebras**:

The Group Algebra

Definition

Let *G* be a group and *k* a field. The **group algebra** k[G] is the set of all linear combinations of finitely many elements of *G* with coefficients in *k*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The group algebra is a Lie algebra.

The Group Algebra

Definition

Let *G* be a group and *k* a field. The **group algebra** k[G] is the set of all linear combinations of finitely many elements of *G* with coefficients in *k*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The group algebra is a Lie algebra.

Let $\mathfrak{L}(G)$ be the subspace of $\mathbf{C}[G]$ that is the linear span of the elements $\hat{g} = g - g^{-1}$. Then $\mathfrak{L}(G)$ is a Lie-subalgebra of $\mathbf{C}[G]$, defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra $\mathfrak{L}(G)$ admits the decomposition

 $\mathfrak{L}(G) = \bigoplus_{\chi \in \mathfrak{R}} \mathfrak{o}(\chi(1)) \oplus \bigoplus_{\chi \in \mathfrak{Sp}} \mathfrak{sp}(\chi(1)) \oplus \bigoplus_{\chi \in \mathfrak{C}} {}'\mathfrak{gl}(\chi(1))$

Let $\mathfrak{L}(G)$ be the subspace of $\mathbf{C}[G]$ that is the linear span of the elements $\hat{g} = g - g^{-1}$. Then $\mathfrak{L}(G)$ is a Lie-subalgebra of $\mathbf{C}[G]$, defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra $\mathfrak{L}(G)$ admits the decomposition

 $\mathfrak{L}(G) = \bigoplus_{\chi \in \mathfrak{R}} \mathfrak{o}(\chi(1)) \oplus \bigoplus_{\chi \in \mathfrak{Sp}} \mathfrak{sp}(\chi(1)) \oplus \bigoplus_{\chi \in \mathfrak{C}} {}'\mathfrak{gl}(\chi(1))$

Let $\mathfrak{L}(G)$ be the subspace of $\mathbf{C}[G]$ that is the linear span of the elements $\hat{g} = g - g^{-1}$. Then $\mathfrak{L}(G)$ is a Lie-subalgebra of $\mathbf{C}[G]$, defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra $\mathfrak{L}(G)$ admits the decomposition

$$\mathfrak{L}(G) = igoplus_{\chi \in \mathfrak{R}} \mathfrak{o}(\chi(1)) \oplus igoplus_{\chi \in \mathfrak{Sp}} \mathfrak{sp}(\chi(1)) \oplus igoplus_{\chi \in \mathfrak{C}} \ '\mathfrak{gl}(\chi(1))$$

Let $\mathfrak{L}(G)$ be the subspace of $\mathbf{C}[G]$ that is the linear span of the elements $\hat{g} = g - g^{-1}$. Then $\mathfrak{L}(G)$ is a Lie-subalgebra of $\mathbf{C}[G]$, defined by Plesken.

What Lie algebra is it?

Theorem

The Lie algebra $\mathfrak{L}(G)$ admits the decomposition

$$\mathfrak{L}(G) = \bigoplus_{\chi \in \mathfrak{R}} \mathfrak{o}(\chi(1)) \oplus \bigoplus_{\chi \in \mathfrak{Sp}} \mathfrak{sp}(\chi(1)) \oplus \bigoplus_{\chi \in \mathfrak{C}} {'\mathfrak{gl}}(\chi(1))$$

Example

The character table for A_5 is:

Conjugacy Class	1	2	3	4	5
χ1	1	1	1	1	1
χ2	3	-1	0	$\frac{\sqrt{5}-1}{2}$	$\frac{\sqrt{5}+1}{2}$
χ3	3	-1	0	$\frac{\sqrt{5}+1}{2}$	$\frac{\sqrt{5}-1}{2}$
χ4	4	0	1	-1	-1
χ5	5	1	-1	0	0

The group A_5 has 5 characters, all of real type, of degrees 1,3,3,4,5. So, $\mathfrak{L}(A_5)$ decomposes in the following way:

 $\mathfrak{L}(A_5) = \mathfrak{o}(1, \mathbf{C}) \oplus \mathfrak{o}(3, \mathbf{C}) \oplus \mathfrak{o}(3, \mathbf{C}) \oplus \mathfrak{o}(4, \mathbf{C}) \oplus \mathfrak{o}(5, \mathbf{C}).$

$\mathfrak{L}(G)$ is a Lie-subalgebra of k[G] for any field k.

Question

Can we find a similar structure theorem if we take k to be a finite field instead of **C**?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

$\mathfrak{L}(G)$ is a Lie-subalgebra of k[G] for any field k.

Question

Can we find a similar structure theorem if we take k to be a finite field instead of **C**?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\mathfrak{L}(G)$ is a Lie-subalgebra of k[G] for any field k.

Question

Can we find a similar structure theorem if we take k to be a finite field instead of **C**?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.

(日) (日) (日) (日) (日) (日) (日)

 $\mathfrak{L}(G)$ is a Lie-subalgebra of k[G] for any field k.

Question

Can we find a similar structure theorem if we take k to be a finite field instead of **C**?

- Classification of Lie algebras over finite fields is MUCH more complicated.
- Representations of groups over finite fields is also much more complex than over an algebraically closed field.

Method

We define the reduction mod p of the Plesken Lie algebra in two ways and clash the results against each other, the result being a fascinating theorem.

- $\mathfrak{L}(G)_{\mathbf{F}_p}$ is the Plesken Lie algebra as a subalgebra of $\mathbf{F}_p[G]$
- £(G)^{⊗F_p} = (£(G))(Z) ⊗_Z F_p, the tensor product of the Z-span of the Chevalley basis of the complex Lie algebra £(G) with F_p.

(日) (日) (日) (日) (日) (日) (日)

Method

We define the reduction mod p of the Plesken Lie algebra in two ways and clash the results against each other, the result being a fascinating theorem.

- £(G)_{F_p} is the Plesken Lie algebra as a subalgebra of F_p[G]
- $\mathfrak{L}(G)^{\otimes \mathbf{F}_p} = (\mathfrak{L}(G))(\mathbf{Z}) \otimes_{\mathbf{Z}} \mathbf{F}_p$, the tensor product of the **Z**-span of the Chevalley basis of the complex Lie algebra $\mathfrak{L}(G)$ with \mathbf{F}_p .

(日) (日) (日) (日) (日) (日) (日)

Important Result

Theorem

If the Lie algebra L is a direct sum of simple ideals $L = L_1 \oplus \cdots \oplus L_n$, then

$$L^{\otimes \mathbf{F}_{p}} = L_{1}^{\otimes \mathbf{F}_{p}} \oplus \cdots \oplus L_{n}^{\otimes \mathbf{F}_{p}}.$$

Example

 $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{\rho}} = \mathfrak{o}(1, \mathbf{F}_{\rho}) \oplus \mathfrak{o}(3, \mathbf{F}_{\rho}) \oplus \mathfrak{o}(3, \mathbf{F}_{\rho}) \oplus \mathfrak{o}(4, \mathbf{F}_{\rho}) \oplus \mathfrak{o}(5, \mathbf{F}_{\rho}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Important Result

Theorem

If the Lie algebra L is a direct sum of simple ideals $L = L_1 \oplus \cdots \oplus L_n$, then

$$L^{\otimes \mathbf{F}_{p}} = L_{1}^{\otimes \mathbf{F}_{p}} \oplus \cdots \oplus L_{n}^{\otimes \mathbf{F}_{p}}.$$

Example

$$\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{\rho}} = \mathfrak{o}(1,\mathbf{F}_{\rho}) \oplus \mathfrak{o}(3,\mathbf{F}_{\rho}) \oplus \mathfrak{o}(3,\mathbf{F}_{\rho}) \oplus \mathfrak{o}(4,\mathbf{F}_{\rho}) \oplus \mathfrak{o}(5,\mathbf{F}_{\rho}).$$

Main Result

Theorem

If $p \neq 2$ and $p \nmid \#G$ the Lie algebras $\mathfrak{L}(G)^{\otimes F_p}$ and $\mathfrak{L}(G)_{F_p}$ are the same if

- the splitting field of C[G] is Q, or
- the splitting field of C[G] is K, an extension of Q and p splits completely in the ring of integers of K.

The spliting field of C[G] is the smallest field over which the complex irreducible representations of G can be realized, and its ring of integers is the collection of all the algegraic integers in the field.

Main Result

Theorem

If $p \neq 2$ and $p \nmid \#G$ the Lie algebras $\mathfrak{L}(G)^{\otimes F_p}$ and $\mathfrak{L}(G)_{F_p}$ are the same if

- the splitting field of C[G] is Q, or
- the splitting field of C[G] is K, an extension of Q and p splits completely in the ring of integers of K.

The spliting field of C[G] is the smallest field over which the complex irreducible representations of *G* can be realized, and its ring of integers is the collection of all the algegraic integers in the field.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let $\rho = 13$.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x+4)(x+7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x+4)(x+7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x+4)(x+7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x+4)(x+7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x+4)(x+7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

Let p = 11.

•
$$x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$$
,

• we get the ideal factorization $(11) = (5, \sqrt{5} + 4)(5, \sqrt{5} + 7)$.

- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

- $x^2 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbb{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

Let p = 11.

- $x^2 5 \equiv (x + 4)(x + 7) \pmod{11}$,
- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbf{Z}[\sqrt{5}]$.

• $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

The splitting field of $C[A_5]$ is $Q(\sqrt{5})$ whose ring of integers is $Z[\sqrt{5}]$.

Example (Let p = 13.)

- $x^2 5$ is irreducible modulo 13,
- the ideal (13) does not factor in \mathcal{O}_K , i.e., it is a prime ideal.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{13}}$, and $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{13}}$ are not the same.

Example

•
$$x^2 - 5 \equiv (x + 4)(x + 7) \pmod{11}$$
,

- we get the ideal factorization $(11) = (5, \sqrt{5}+4)(5, \sqrt{5}+7)$.
- the prime 11 splits completely in $\mathbf{Z}[\sqrt{5}]$.
- $\mathfrak{L}(A_5)_{\mathbf{F}_{11}}$ is the same as $\mathfrak{L}(A_5)^{\otimes \mathbf{F}_{11}}$.

Why Most People Do Not Associate With Lie Algebras

If algebras were people ... (im sorry, 1 just can't) associate with you.) LIE GrouPTMEYG BBONS