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A Decomposition Theorem of Plesken Lie Algebras over Finite Fields

Definition of Lie Algebra

Definition
Let k be a field. A Lie algebra L over k is a k -vector space L
together with a bilinear map

[ , ] : L× L→ L

(called the bracket or commutator) satisfying:
1 [x , x ] = 0 for all x in L;
2 [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0 for all x , y , z in L.

(Jacobi identity)

Lie algebras are neither associative nor commutative
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Some Examples

Example

R3 with the Lie bracket given by the cross product of vectors

[x , y ] = x × y , for all x , y ∈ R3 .

Example

Let gl(n, k) be the vector space of all n × n matrices over k with
the Lie bracket defined by

[x , y ] = xy − yx ,

where the multiplication on the right is the usual product of
matrices.
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Classification of Simple Lie Algebras

A Lie algebra is simple if it has no non-trivial ideals and is
not abelian.
A Lie algebra is semisimple if it does not contain any
non-zero abelian ideals.
In particular, a simple Lie algebra is semisimple.
Conversely, it can be proven that any semisimple Lie
algebra is the direct sum of its minimal ideals, which are
canonically determined simple Lie algebras.

Classification
With five exceptions, every finite-dimensional simple Lie
algebra over C is isomorphic to one of the classical Lie
algebras:

sl(n,C), o(n,C), sp(2n,C).
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The Group Algebra

Definition
Let G be a group and k a field. The group algebra k [G] is the
set of all linear combinations of finitely many elements of G with
coefficients in k .

The group algebra is a Lie algebra.
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Structure Theorem

Let L(G) be the subspace of C[G] that is the linear span of the
elements ĝ = g − g−1. Then L(G) is a Lie-subalgebra of C[G],
defined by Plesken.

What Lie algebra is it?

Theorem
The Lie algebra L(G) admits the decomposition

L(G) =
⊕
χ∈R

o(χ(1))⊕
⊕

χ∈Sp

sp(χ(1))⊕
⊕
χ∈C

′gl(χ(1))

where R,Sp and C are the sets of irreducible characters of
real, symplectic, and complex types, respectively, and where
the prime signifies that there is just one summand gl(χ(1)) for
each pair {χ, χ̄} from C.
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Example

Example
The character table for A5 is:

Conjugacy Class 1 2 3 4 5
χ1 1 1 1 1 1
χ2 3 -1 0

√
5−1
2

√
5+1
2

χ3 3 -1 0
√

5+1
2

√
5−1
2

χ4 4 0 1 -1 -1
χ5 5 1 -1 0 0

The group A5 has 5 characters, all of real type, of degrees
1,3,3,4,5. So, L(A5) decomposes in the following way:

L(A5) = o(1,C)⊕ o(3,C)⊕ o(3,C)⊕ o(4,C)⊕ o(5,C).
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My project

L(G) is a Lie-subalgebra of k [G] for any field k .

Question
Can we find a similar structure theorem if we take k to be a
finite field instead of C?

Classification of Lie algebras over finite fields is MUCH
more complicated.
Representations of groups over finite fields is also much
more complex than over an algebraically closed field.
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Method

We define the reduction mod p of the Plesken Lie algebra in
two ways and clash the results against each other, the result
being a fascinating theorem.

L(G)Fp is the Plesken Lie algebra as a subalgebra of Fp[G]

L(G)⊗Fp = (L(G))(Z)⊗Z Fp, the tensor product of the
Z-span of the Chevalley basis of the complex Lie algebra
L(G) with Fp.
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Important Result

Theorem
If the Lie algebra L is a direct sum of simple ideals
L = L1 ⊕ · · · ⊕ Ln, then

L⊗Fp = L⊗Fp
1 ⊕ · · · ⊕ L⊗Fp

n .

Example

L(A5)⊗Fp = o(1,Fp)⊕ o(3,Fp)⊕ o(3,Fp)⊕ o(4,Fp)⊕ o(5,Fp).
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Main Result

Theorem

If p 6= 2 and p - #G the Lie algebras L(G)⊗Fp and L(G)Fp are
the same if

the splitting field of C[G] is Q, or
the splitting field of C[G] is K , an extension of Q and p
splits completely in the ring of integers of K .

The spliting field of C[G] is the smallest field over which the
complex irreducible representations of G can be realized, and
its ring of integers is the collection of all the algegraic integers
in the field.
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Example

The splitting field of C[A5] is Q(
√

5) whose ring of integers is
Z[
√

5].

Example (Let p = 13.)

x2 − 5 is irreducible modulo 13,
the ideal (13) does not factor in OK , i.e., it is a prime ideal.
L(A5)F13 , and L(A5)⊗F13 are not the same.

Example
Let p = 11.

x2 − 5 ≡ (x + 4)(x + 7) (mod 11),

we get the ideal factorization (11) = (5,
√

5 + 4)(5,
√

5 + 7).

the prime 11 splits completely in Z[
√

5].
L(A5)F11 is the same as L(A5)⊗F11 .
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Why Most People Do Not Associate With Lie
Algebras


