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Definitions: Number Field & Ring of Integers

Definition
A number field is a finite extension of Q.
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Definitions: Number Field & Ring of Integers

Definition
A number field is a finite extension of Q.

Definition

A complex number is an algebraic integer if it is a root of
some monic polynomial with coefficients in Z.
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Definitions: Number Field & Ring of Integers

Definition
A number field is a finite extension of Q.

A complex number is an algebraic integer if it is a root of
some monic polynomial with coefficients in Z.

The ring of integers of a number field K, denoted by O, is
the set of all algebraic integers in K.
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Definitions: Number Field & Ring of Integers

Definition
A number field is a finite extension of Q.

A complex number is an algebraic integer if it is a root of
some monic polynomial with coefficients in Z.

The ring of integers of a number field K, denoted by O, is
the set of all algebraic integers in K.

OKCK

| |
Z c Q
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Is Ok a Unique Factorization Domain?
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Is Ok a Unique Factorization Domain?

Ok is not always a UFD.
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Is Ok a Unique Factorization Domain?

Ok is not always a UFD.

Let K = Q(v/—6). Then Ok = Z[v/—6], and
—2.3=—-6=(v—-6)?
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Is Ok a Unique Factorization Domain?

Ok is not always a UFD.

Example

Let K = Q(v/—6). Then Ok = Z[v/—6], and
—2.3=—-6=(v—-6)?

but 2, 3, and /—6 are irreducible in Z[/—6].
Thus, Z[v/—6] is not a UFD.
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Unique Factorization of Ideals

Ok is a Dedekind domain for any number field K .
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Unique Factorization of Ideals

Ok is a Dedekind domain for any number field K .

Every proper ideal in a Dedekind domain factors uniquely into a
product of prime ideals.
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Unique Factorization of Ideals

Ok is a Dedekind domain for any number field K .

Every proper ideal in a Dedekind domain factors uniquely into a
product of prime ideals.

Example

Let K = Q(v/—6). Then Ok = Z[/—6].
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Unique Factorization of Ideals

Ok is a Dedekind domain for any number field K .

Every proper ideal in a Dedekind domain factors uniquely into a
product of prime ideals.

Let K = Q(v/—6). Then Ok = Z[/—6].

(—2) = (2,v/-6)*
(3) = (3,V—6)°
(vV—6) = (2,v/—6)(3,V/—6)
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Unique Factorization of Ideals

Ok is a Dedekind domain for any number field K .

Every proper ideal in a Dedekind domain factors uniquely into a
product of prime ideals.

Let K = Q(v/—6). Then Ok = Z[/—6].
(—2) = (2,V/-6)*
(3) = (3,V-6)
(V—6) = (2,v/—6)(3,v/—6)
Note (—6) = (—2)(3) = (vV—6)? = (2,V—6)2(3, V/—6)*.
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Class Group & Class Number

Equivalence Relation

Nonzero ideals | ~ J if al = bJ for some nonzero a,b € O.
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Class Group & Class Number

Equivalence Relation
Nonzero ideals | ~ J if al = bJ for some nonzero a,b € O.

The equivalence classes under ~ form a finite abelian group,
called the class group, denoted by Clx . The size of the class
group is called the class number, denoted by hy .
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Class Group & Class Number

Equivalence Relation
Nonzero ideals | ~ J if al = bJ for some nonzero a,b € O.

The equivalence classes under ~ form a finite abelian group,
called the class group, denoted by Clx . The size of the class
group is called the class number, denoted by hy .

@ Group operation: [I]* [J] = [V].
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Class Group & Class Number

Equivalence Relation
Nonzero ideals | ~ J if al = bJ for some nonzero a,b € O.

The equivalence classes under ~ form a finite abelian group,
called the class group, denoted by Clx . The size of the class
group is called the class number, denoted by hy .

@ Group operation: [I]* [J] = [V].
@ Associativity: v/
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Class Group & Class Number

Equivalence Relation
Nonzero ideals | ~ J if al = bJ for some nonzero a,b € O.

The equivalence classes under ~ form a finite abelian group,
called the class group, denoted by Clx . The size of the class
group is called the class number, denoted by hy .

@ Group operation: [I]* [J] = [V].
@ Associativity: v/
@ |dentity: the equivalence class of principal ideals.
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Class Group & Class Number

Equivalence Relation
Nonzero ideals | ~ J if al = bJ for some nonzero a,b € O.

The equivalence classes under ~ form a finite abelian group,
called the class group, denoted by Clx . The size of the class
group is called the class number, denoted by hy .

@ Group operation: [I]* [J] = [V].

@ Associativity: v/

@ |dentity: the equivalence class of principal ideals.
@ Inverses: hard
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What does the class number tell us?
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What does the class number tell us?

@ Since the identity element of Clk is the class of principal
ideals, then hx = 1 if and only if Ok is a principal ideal
domain (PID).
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What does the class number tell us?

@ Since the identity element of Clk is the class of principal
ideals, then hx = 1 if and only if Ok is a principal ideal
domain (PID).

@ APID is always a UFD, so Ok is a UFD if hy = 1.
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What does the class number tell us?

@ Since the identity element of Clk is the class of principal
ideals, then hx = 1 if and only if Ok is a principal ideal
domain (PID).

@ APID is always a UFD, so Ok is a UFD if hy = 1.

For Dedekind domains, UFD < PID.
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What does the class number tell us?

@ Since the identity element of Clk is the class of principal
ideals, then hx = 1 if and only if Ok is a principal ideal
domain (PID).

@ APID is always a UFD, so Ok is a UFD if hy = 1.

For Dedekind domains, UFD < PID.

@ Thus, Ok isa UFD if and only if hx = 1.
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What does the class number tell us?

@ Since the identity element of Clk is the class of principal
ideals, then hx = 1 if and only if Ok is a principal ideal
domain (PID).

@ APID is always a UFD, so Ok is a UFD if hy = 1.

For Dedekind domains, UFD < PID.

@ Thus, Ok isa UFD if and only if hx = 1.

@ Roughly, the class number measures the closeness of Ox
to being a UFD.
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Class Numbers of Quadratic Fields:

d 2 3 5 6 7 10 11 13 14 15 17 19 21
CIQ(\/J) i1 1 1 1 2 1 1 1 2 1 1 1
Clgy=gy |+ 1 2 2 1 2 1 2 4 2 4 1 4
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Class Numbers of Quadratic Fields:

d 2 3 5 6 7 10 11 13 14 15 17 19 21
CIQ(\/J) i1 1 1 1 2 1 1 1 2 1 1 1
Clgy=gy |+ 1 2 2 1 2 1 2 4 2 4 1 4

The class number of Q(v/d), d < 0, is 1 if and only if
d——1 -2 -3 -7 —11,—19,—43, —67 or —163.
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Class Numbers of Quadratic Fields:

d 2 3 5 6 7 10 11 13 14 15 19 21
CIQ(\/J) i1 1 1 1 2 1 1 1 2 1
Clgy=gy |+ 1 2 2 1 2 1 2 4 2 4

Theorem

The class number of Q(+/d), d < 0, is 1 if and only if
d=—1,-2,-3 —7,—-11,—19, —43, —67 or —163.

| A\

Open Question

Are there infinitely many real quadratic number fields with class

number one?

v
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Function Fields

Definition

A function field (in one variable) over a finite field F is a field
K, containing F and at least one transcendental element T over
IF, such that K /F(T) is a finite algebraic extension.
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Function Fields

Definition

A function field (in one variable) over a finite field F is a field
K, containing F and at least one transcendental element T over
IF, such that K /F(T) is a finite algebraic extension.

@ Note that F(T) is the field of fractions of polynomials in T
over .
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Function Fields

Definition

A function field (in one variable) over a finite field F is a field
K, containing F and at least one transcendental element T over
IF, such that K /F(T) is a finite algebraic extension.

@ Note that F(T) is the field of fractions of polynomials in T
over FF.

@ We can define the ring of integers of K in the same way as
for number fields.
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Function Fields

Definition

A function field (in one variable) over a finite field F is a field
K, containing F and at least one transcendental element T over
IF, such that K /F(T) is a finite algebraic extension.

@ Note that F(T) is the field of fractions of polynomials in T
over .

@ We can define the ring of integers of K in the same way as
for number fields.

@ The ring of integers of F(T) is F[T], the ring of polynomials
inT over F.
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Number Fields vs. Function Fields

| Number Field | Function Field |
Ok C K Ok C K

| \ \ |
Z c Q Fq[T] < Fq(T)

Z Fo[T]

UFD yes yes

irreducibles (infinitely many) primes | (infinitely many)
irreducible polynomials
units {1} (finitely many) Fg (finitely many)
residue class | |Z/nZ| = |n| \Fq ]/fFq[T]| = gef
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Cool Things about Function Fields
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Cool Things about Function Fields

@ The proof of the analogue of Fermat’s Last Theorem for
function fields takes half a page!
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Cool Things about Function Fields

@ The proof of the analogue of Fermat’s Last Theorem for
function fields takes half a page!

@ The abc-conjecture has been proven!
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Cool Things about Function Fields

@ The proof of the analogue of Fermat’s Last Theorem for
function fields takes half a page!

@ The abc-conjecture has been proven!

@ Riemann Hypothesis analogue for function fields also
proven!
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Cool Things about Function Fields

@ The proof of the analogue of Fermat’s Last Theorem for
function fields takes half a page!

@ The abc-conjecture has been proven!

@ Riemann Hypothesis analogue for function fields also
proven!

@ Every function field is isomorphic to a non-singular

projective curve, so we can compute the genus of the
function field.
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Cool Things about Function Fields

@ The proof of the analogue of Fermat’s Last Theorem for
function fields takes half a page!

@ The abc-conjecture has been proven!

@ Riemann Hypothesis analogue for function fields also
proven!

@ Every function field is isomorphic to a non-singular
projective curve, so we can compute the genus of the
function field.

@ Still, questions on class numbers of function fields are
VERY HARD.

Algebraic Number Theory Group - SMALL °08 Function Fields with Class Number Indivisible by a prime ¢



The Case ¢/ =3

Theorem (Pacelli, Rosen)

Let m be any positive integer, m > 1 and 3 t m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T) with divisor class
number indivisible by 3.
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The Case ¢/ =5

Let m be any positive integer, m > 1 and5 { m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T) with divisor class
number indivisible by 5.
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The Case ¢/ =5

Let m be any positive integer, m > 1 and5 { m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T) with divisor class
number indivisible by 5.

Let ¢ be a root of the polynomial X4 + X3 + X2 + X + 1 € Fq[X],
and assume the following conditions on q are true:
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The Case ¢/ =5

Let m be any positive integer, m > 1 and5 { m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T) with divisor class
number indivisible by 5.

Let ¢ be a root of the polynomial X4 + X3 + X2 + X + 1 € Fq[X],
and assume the following conditions on q are true:

@ gq=4(mod5),gtm

Algebraic Number Theory Group - SMALL °08 Function Fields with Class Number Indivisible by a prime ¢



The Case ¢/ =5

Let m be any positive integer, m > 1 and5 { m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T) with divisor class
number indivisible by 5.

Let ¢ be a root of the polynomial X4 + X3 + X2 + X + 1 € Fq[X],
and assume the following conditions on q are true:

@ gq=4(mod5),gtm
o there exists v € Fg such that v + 5¢ is not a p-th power in
[Fq(¢) for all primes p dividing m
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The Case ¢/ =5

Let m be any positive integer, m > 1 and5 { m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T) with divisor class
number indivisible by 5.

Let ¢ be a root of the polynomial X4 + X3 + X2 + X + 1 € Fq[X],
and assume the following conditions on q are true:
@ gq=4(mod5),gtm
o there exists v € Fg such that v + 5¢ is not a p-th power in
[Fq(¢) for all primes p dividing m
e if 4/m, then v + 5¢ ¢ —4Fq(¢)*
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Constructing the Fields
The Recursion Relation

Define Xo = T and

Xy —10X% )+ 10wXE )+ BwXjg — 1
! BXj_1(X2, — 2wX2 ) —2wXj_1 +1)

forj > 1and w € Fq(T) such that w? + w — 1 = 0.
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Constructing the Fields
The Recursion Relation

Define Xo = T and

XPq = 10X2 ; +10wX?2 | +5wXj 1 — 1

) BXj_1(X2, — 2wX2 ) —2wXj_1 +1)

forj > 1and w € Fq(T) such that w? + w — 1 = 0.

The Field of Degree m
Fixn > 1. For 1 <i < n, define

Ni = IE“q(xn—i)
Mi = Fq(xn,i, m\/ 5Xn -+ "}/)
Let Ln - Fq(T)( m\/SXn +’y) — Mn.
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Field Diagram

N; = IE‘q(Xn_i) and M; = Fq(Xn_i, VoXn +’}/)

Mn:Ln
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Polynomials

Definition of fp’s

Let p be a divisor of m such that either p is prime or p = 4.
Define
P p P p P p
_ p—i p—i _ p—i
fp(x)—SZ% (I)x 72_; (i>x (5+w) 2_% (I>x
.z'H(s) .z'I(5) .z'?(5)
SN . (p
+w(y—5) Z < )Xp'+(”y+5w) Z <I)xp'
i2305) i2a5)
N SOV ) 2 i gl
fa(x) = X" = 29" = (1w + O)X" +Aw(zy — x + (W + ¢)

Fact: Each fy(x) is Eisenstein with respect to the chosen prime
p C Q(w) lying over p, and thus each fy(x) is irreducible over

Q(w).
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The Rest of the Proof

@ Reduce the problem to showing that f,(x) has no roots
mod q.
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The Rest of the Proof

@ Reduce the problem to showing that f,(x) has no roots
mod q.

Theorem (Jordan)

Let G be a group acting on a finite set X with cardinality n. If
n > 2 and G acts transitively on X, then there is an element
g € G which acts on X without a fixed point.
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The Rest of the Proof

@ Reduce the problem to showing that f,(x) has no roots
mod q.

Theorem (Jordan)

Let G be a group acting on a finite set X with cardinality n. If
n > 2 and G acts transitively on X, then there is an element
g € G which acts on X without a fixed point.

Theorem (Frobenius)

Letf be an irreducible polynomial over Q(w) with Galois group
G. The density of primes q for which f has no roots mod q
exists, and is equal to 1/|G| times the number of o € G with no
fixed points.
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What about other values of ¢7?

@ How can we generalize this result to an arbitrary prime ¢?
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What about other values of ¢7?

@ How can we generalize this result to an arbitrary prime ¢?

@ The ¢ =5 case relied heavily on creating the chain of cyclic
quintic extensions:

ngNZQ"‘gNn—lgNn:Fq(T)‘
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What about other values of ¢7?

@ How can we generalize this result to an arbitrary prime ¢?

@ The ¢ =5 case relied heavily on creating the chain of cyclic
quintic extensions:

ngNZQ"‘gNn—lgNn:Fq(T)‘

So, in order to use the same techniques in general, we
need a polynomial that generates cyclic extensions of
degree /.
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What about other values of ¢?

@ How can we generalize this result to an arbitrary prime ¢?

@ The ¢ =5 case relied heavily on creating the chain of cyclic
quintic extensions:

ngNZQ"‘gNn—lgNn:Fq(T)‘

So, in order to use the same techniques in general, we
need a polynomial that generates cyclic extensions of
degree /.

@ Rikuna showed that the splitting field of the following
polynomial has Galois group Z/¢Z over k(T ) for certain
fields k:
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The General Case

Let ¢ be a prime and m > 1 be any positive integer such that
¢1m. Then there are a positive density of primes (and prime
powers) g such that for a given rational function field Fq(T ),
there are infinitely many function fields of degree m over Fq(T)
with divisor class number indivisible by /.
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Conditions on @

Let ¢ be aroot of g(X) = X1+ X2 4+... 4+ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢~.

Algebraic Number Theory Group - SMALL °08 Function Fields with Class Number Indivisible by a prime ¢



Conditions on @

Let ¢ be aroot of g(X) = X1+ X2 4+... 4+ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢~.

For a particular g, we need the following conditions satisfied for
the theorem to hold:
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Conditions on @

Let ¢ be aroot of g(X) = X1+ X2 4+... 4+ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢~.

For a particular g, we need the following conditions satisfied for
the theorem to hold:

@ ( ¢ Fq, more precisely g(X) has no roots mod q;
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Conditions on @

Let ¢ be arootof g(X) = X1 X2 4... £ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢ 7.
For a particular g, we need the following conditions satisfied for
the theorem to hold:

@ ( ¢ Fq, more precisely g(X) has no roots mod q;

@ w € Fq, more precisely h(X) splits completely mod g;
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Conditions on @

Let ¢ be aroot of g(X) = X1+ X2 4+... 4+ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢~.

For a particular g, we need the following conditions satisfied for
the theorem to hold:

@ ( ¢ Fq, more precisely g(X) has no roots mod q;
@ w € Fq, more precisely h(X) splits completely mod g;

@ charFq does not divide m;
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Conditions on @

Let ¢ be aroot of g(X) = X1+ X2 4+... 4+ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢~.

For a particular g, we need the following conditions satisfied for
the theorem to hold:

@ ( ¢ Fq, more precisely g(X) has no roots mod q;
@ w € Fq, more precisely h(X) splits completely mod g;
@ charFq does not divide m;

@ There exists v € Fg such that v + £¢ is not a p-th power in
Fq(¢) for all primes p dividing m;
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Conditions on @

Let ¢ be aroot of g(X) = X1+ X2 4+... 4+ X +1and let
h(X) be the minimal polynomial of w = ¢ + ¢~.

For a particular g, we need the following conditions satisfied for
the theorem to hold:

@ ( ¢ Fq, more precisely g(X) has no roots mod q;
@ w € Fq, more precisely h(X) splits completely mod g;
@ charFq does not divide m;

@ There exists v € Fg such that v + £¢ is not a p-th power in
Fq(¢) for all primes p dividing m;

@ If 4jm, then v + £¢ ¢ —4F4(¢)*.
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Constructing the Fields: Revisited

Define Xo = T and

Xz — O)F = ((Xj_1 — ¢THF
(Xj—1 — Q) — Xj—1 — ¢ HE 7

X;j =

forj > 1.
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Constructing the Fields: Revisited

Define Xo = T and

Xz — O)F = ((Xj_1 — ¢THF
(Xj—1 — Q) — Xj—1 — ¢ HE 7

X;j =

forj > 1.

The Field of Degree m
Fix n > 1. For 1 <i < n, define

N :]Fq(xn—i)
MI = ]Fq(Xn_i, m\/éXn +'}/)
Let Ln — Fq(T)( m\/ﬁXn +"y) = Mn.
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Field Diagram

Ni = Fq(Xn—i) and M; = Fq(Xn_i, VXn +7)

Mn:Ln
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Proving there are infinitely many g

@ Recall: We want (¢ + v ¢ IFq(¢)P for all p dividing m and
0+~ & —4Fq(O)*if 4 | m.
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Proving there are infinitely many g

@ Recall: We want (¢ + v ¢ IFq(¢)P for all p dividing m and
0+~ & —4Fq(O)*if 4 | m.

@ For p a prime or p = 4, define a polynomial
fp(X) € Q(w)[X] as follows:

(-1

where aj = () —¢7)/(¢ - ¢!

) and ~ is chosen to make f,
Eisenstein for each p | m.
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Proving there are infinitely many g

@ Recall: We want (¢ + v ¢ IFq(¢)P for all p dividing m and
0+~ & —4Fq(O)*if 4 | m.

@ For p a prime or p = 4, define a polynomial
fp(X) € Q(w)[X] as follows:

(-1

where aj = () —¢7)/(¢ - ¢!

) and ~ is chosen to make f,
Eisenstein for each p | m.

@ The polynomial f, was chosen so that if f, has no roots

mod g, then ¢ 4+~ & Fq(¢)P, and if f4 has no roots mod q,
then £¢ + v ¢ —4Fq(¢)*.
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Proving there are infinitely many g

@ Recall: We want (¢ + v ¢ IFq(¢)P for all p dividing m and
0+~ & —4Fq(O)*if 4 | m.

@ For p a prime or p = 4, define a polynomial
fp(X) € Q(w)[X] as follows:

(-1

where aj = () —¢7)/(¢ - ¢!

) and ~ is chosen to make f,
Eisenstein for each p | m.

@ The polynomial f, was chosen so that if f, has no roots

mod g, then ¢ 4+~ & Fq(¢)P, and if f4 has no roots mod q,
then £¢ + v ¢ —4Fq(¢)*.

@ The remainder of the proof is identical to the ¢ = 5 case
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Thank You

—

[ have a pm

but this slide J
is too small

to contaiW /an

X+ax +bx'vex +dx+e I

| | V
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Analogous Result for Number Fields?

The methods used in the function field case do not generalize
to number fields.
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Analogous Result for Number Fields?

The methods used in the function field case do not generalize
to number fields.

@ Function fields have nonzero characteristic, hence we can
choose q so that IFq will have certain useful properties,
such as w € Fq and ¢ ¢ Fq. Number fields always have
characteristic 0, and the base field is always Q.
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Analogous Result for Number Fields?

The methods used in the function field case do not generalize
to number fields.

@ Function fields have nonzero characteristic, hence we can
choose q so that IFq will have certain useful properties,
such as w € Fq and ¢ ¢ Fq. Number fields always have
characteristic 0, and the base field is always Q.

@ In the function field case, we can construct a chain of fields
Ni €Nz C---CNp_1 € Njp :Fq(T)

leading up to the base field Fq(T). In number fields, the
base field Q has no proper nontrivial subfields.
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Analogous Result for Number Fields?

The methods used in the function field case do not generalize
to number fields.

@ Function fields have nonzero characteristic, hence we can
choose q so that IFq will have certain useful properties,
such as w € Fq and ¢ ¢ Fq. Number fields always have
characteristic 0, and the base field is always Q.

@ In the function field case, we can construct a chain of fields
Ni €Nz C---CNp_1 € Njp :Fq(T)

leading up to the base field Fq(T). In number fields, the
base field Q has no proper nontrivial subfields.
@ Tools used in the function field case are unavailable in the

number field case, such as the genus of a curve and the
Riemann-Hurwitz equation.
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