Function Fields with Class Number Indivisible by a prime ℓ

Michael Daub, Jaclyn Lang, Mona Merling, Natee Pitiwan

SMALL 2008

Advisor: Allison Pacelli

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

A (1) > A (2) > A

Definition

A **number field** is a finite extension of \mathbb{Q} .

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

Definition

A **number field** is a finite extension of \mathbb{Q} .

Definition

A complex number is an **algebraic integer** if it is a root of some monic polynomial with coefficients in \mathbb{Z} .

イロト イヨト イヨト イヨト

Definition

A **number field** is a finite extension of \mathbb{Q} .

Definition

A complex number is an **algebraic integer** if it is a root of some monic polynomial with coefficients in \mathbb{Z} .

Definition

The **ring of integers** of a number field *K*, denoted by \mathcal{O}_K , is the set of all algebraic integers in *K*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A **number field** is a finite extension of \mathbb{Q} .

Definition

A complex number is an **algebraic integer** if it is a root of some monic polynomial with coefficients in \mathbb{Z} .

Definition

The **ring of integers** of a number field *K*, denoted by \mathcal{O}_K , is the set of all algebraic integers in *K*.

$$\begin{array}{ccc} \mathcal{O}_K & \subset & K \\ | & & | \\ \mathbb{Z} & \subset & \mathbb{Q} \end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark

 \mathcal{O}_K is not always a UFD.

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

▲冊 ▶ ▲ 臣 ▶ ▲ 臣

Remark

 \mathcal{O}_K is not always a UFD.

Example

Let
$$K = \mathbb{Q}(\sqrt{-6})$$
. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$, and

$$-2 \cdot 3 = -6 = (\sqrt{-6})^2$$

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark

 \mathcal{O}_K is not always a UFD.

Example

Let
$$K = \mathbb{Q}(\sqrt{-6})$$
. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$, and

$$-2 \cdot 3 = -6 = (\sqrt{-6})^2$$

but 2, 3, and $\sqrt{-6}$ are irreducible in $\mathbb{Z}[\sqrt{-6}]$. Thus, $\mathbb{Z}[\sqrt{-6}]$ is not a UFD.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark

 \mathcal{O}_K is a Dedekind domain for any number field K.

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

(日)

Remark

 \mathcal{O}_K is a Dedekind domain for any number field K.

Theorem

Every proper ideal in a Dedekind domain factors uniquely into a product of prime ideals.

< 同 > < 三 > <

Remark

 \mathcal{O}_K is a Dedekind domain for any number field K.

Theorem

Every proper ideal in a Dedekind domain factors uniquely into a product of prime ideals.

Example

Let
$$K = \mathbb{Q}(\sqrt{-6})$$
. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$.

Remark

 \mathcal{O}_K is a Dedekind domain for any number field K.

Theorem

Every proper ideal in a Dedekind domain factors uniquely into a product of prime ideals.

Example

Let
$$K = \mathbb{Q}(\sqrt{-6})$$
. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$.

$$egin{aligned} \langle -2
angle &= \langle 2, \sqrt{-6}
angle^2 \ \langle 3
angle &= \langle 3, \sqrt{-6}
angle^2 \ \langle \sqrt{-6}
angle &= \langle 2, \sqrt{-6}
angle \langle 3, \sqrt{-6}
angle \end{aligned}$$

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

Remark

 \mathcal{O}_K is a Dedekind domain for any number field K.

Theorem

Every proper ideal in a Dedekind domain factors uniquely into a product of prime ideals.

Example

Let
$$K = \mathbb{Q}(\sqrt{-6})$$
. Then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-6}]$.

$$egin{aligned} \langle -2
angle &= \langle 2, \sqrt{-6}
angle^2 \ \langle 3
angle &= \langle 3, \sqrt{-6}
angle^2 \ \langle \sqrt{-6}
angle &= \langle 2, \sqrt{-6}
angle \langle 3, \sqrt{-6}
angle \end{aligned}$$

Note $\langle -6 \rangle = \langle -2 \rangle \langle 3 \rangle = \langle \sqrt{-6} \rangle^2 = \langle 2, \sqrt{-6} \rangle^2 \langle 3, \sqrt{-6} \rangle^2.$

Function Fields with Class Number Indivisible by a prime ℓ

Nonzero ideals $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$.

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

▲圖▶ ▲ 国▶ ★ 国▶

Nonzero ideals $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$.

Theorem

The equivalence classes under \sim form a finite abelian group, called the **class group**, denoted by Cl_K . The size of the class group is called the **class number**, denoted by h_K .

A (1) > A (2) > A

Nonzero ideals $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$.

Theorem

The equivalence classes under \sim form a finite abelian group, called the **class group**, denoted by Cl_K . The size of the class group is called the **class number**, denoted by h_K .

• Group operation: [I] * [J] = [IJ].

A (1) > A (2) > A

Nonzero ideals $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$.

Theorem

The equivalence classes under \sim form a finite abelian group, called the **class group**, denoted by Cl_K . The size of the class group is called the **class number**, denoted by h_K .

- Group operation: [I] * [J] = [IJ].
- Associativity: ✓

Nonzero ideals $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$.

Theorem

The equivalence classes under \sim form a finite abelian group, called the **class group**, denoted by Cl_K . The size of the class group is called the **class number**, denoted by h_K .

- Group operation: [I] * [J] = [IJ].
- Associativity: ✓
- Identity: the equivalence class of principal ideals.

(日)

Nonzero ideals $I \sim J$ if aI = bJ for some nonzero $a, b \in \mathcal{O}_K$.

Theorem

The equivalence classes under \sim form a finite abelian group, called the **class group**, denoted by Cl_K . The size of the class group is called the **class number**, denoted by h_K .

- Group operation: [I] * [J] = [IJ].
- Associativity: ✓
- Identity: the equivalence class of principal ideals.
- Inverses: hard

(日)

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

ヘロマ ヘロマ ヘロマ ヘ

• Since the identity element of Cl_K is the class of principal ideals, then $h_K = 1$ if and only if \mathcal{O}_K is a principal ideal domain (PID).

• (1) • (1) • (1)

- Since the identity element of Cl_K is the class of principal ideals, then $h_K = 1$ if and only if \mathcal{O}_K is a principal ideal domain (PID).
- A PID is always a UFD, so \mathcal{O}_K is a UFD if $h_K = 1$.

A (B) > A (B) > A (B)

- Since the identity element of Cl_K is the class of principal ideals, then $h_K = 1$ if and only if \mathcal{O}_K is a principal ideal domain (PID).
- A PID is always a UFD, so \mathcal{O}_K is a UFD if $h_K = 1$.

Theorem

For Dedekind domains, $UFD \Leftrightarrow PID$.

- Since the identity element of Cl_K is the class of principal ideals, then $h_K = 1$ if and only if \mathcal{O}_K is a principal ideal domain (PID).
- A PID is always a UFD, so \mathcal{O}_K is a UFD if $h_K = 1$.

Theorem

For Dedekind domains, UFD \Leftrightarrow PID.

• Thus, \mathcal{O}_K is a UFD if and only if $h_K = 1$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Since the identity element of Cl_K is the class of principal ideals, then $h_K = 1$ if and only if \mathcal{O}_K is a principal ideal domain (PID).
- A PID is always a UFD, so \mathcal{O}_K is a UFD if $h_K = 1$.

- Thus, \mathcal{O}_K is a UFD if and only if $h_K = 1$.
- Roughly, the class number measures the closeness of O_K to being a UFD.

(日)

Class Numbers of Quadratic Fields:

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

< 2 > < 2 >

크

Class Numbers of Quadratic Fields:

Theorem

The class number of $\mathbb{Q}(\sqrt{d})$, d < 0, is 1 if and only if d = -1, -2, -3, -7, -11, -19, -43, -67 or -163.

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

・ロト ・四ト ・ヨト ・ヨト

э.

Class Numbers of Quadratic Fields:

Theorem

The class number of $\mathbb{Q}(\sqrt{d})$, d < 0, is 1 if and only if d = -1, -2, -3, -7, -11, -19, -43, -67 or -163.

Open Question

Are there infinitely many real quadratic number fields with class number one?

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

(日)

A **function field** (in one variable) over a finite field \mathbb{F} is a field K, containing \mathbb{F} and at least one transcendental element T over \mathbb{F} , such that $K/\mathbb{F}(T)$ is a finite algebraic extension.

A **function field** (in one variable) over a finite field \mathbb{F} is a field K, containing \mathbb{F} and at least one transcendental element T over \mathbb{F} , such that $K/\mathbb{F}(T)$ is a finite algebraic extension.

Note that 𝑘(𝑛) is the field of fractions of polynomials in 𝑛 over 𝑘.

<日</th>

A **function field** (in one variable) over a finite field \mathbb{F} is a field K, containing \mathbb{F} and at least one transcendental element T over \mathbb{F} , such that $K/\mathbb{F}(T)$ is a finite algebraic extension.

- Note that 𝑘(𝑛) is the field of fractions of polynomials in 𝑛 over 𝑘.
- We can define the ring of integers of *K* in the same way as for number fields.

A **function field** (in one variable) over a finite field \mathbb{F} is a field K, containing \mathbb{F} and at least one transcendental element T over \mathbb{F} , such that $K/\mathbb{F}(T)$ is a finite algebraic extension.

- Note that 𝑘(𝑛) is the field of fractions of polynomials in 𝑛 over 𝑘.
- We can define the ring of integers of *K* in the same way as for number fields.
- The ring of integers of $\mathbb{F}(T)$ is $\mathbb{F}[T]$, the ring of polynomials in T over \mathbb{F} .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Number Fields vs. Function Fields

Number Field			Function Field		
\mathcal{O}_K	\subset	K	\mathcal{O}_K	\subset	K
\mathbb{Z}	\subset	\mathbb{Q}	$\mathbb{F}_q[T]$	\subset	$\mathbb{F}_{q}(T)$

	\mathbb{Z}	$\mid \mathbb{F}_{q}[T]$
UFD	yes	yes
irreducibles	(infinitely many) primes	(infinitely many)
		irreducible polynomials
units	$\{\pm 1\}$ (finitely many)	\mathbb{F}_q^{\times} (finitely many)
residue class	$ \mathbb{Z}/n\mathbb{Z} = n $	$\left \left \mathbb{F}_{q}[T]/f\mathbb{F}_{q}[T] ight =q^{\deg f}$

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

▲御 ▶ ▲ 副 ▶

Cool Things about Function Fields

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

(日)

Cool Things about Function Fields

• The proof of the analogue of Fermat's Last Theorem for function fields takes half a page!

< 同 > < 回 > < 回
- The proof of the analogue of Fermat's Last Theorem for function fields takes half a page!
- The *abc*-conjecture has been proven!

< 同 > < 回 > < 回

- The proof of the analogue of Fermat's Last Theorem for function fields takes half a page!
- The *abc*-conjecture has been proven!
- Riemann Hypothesis analogue for function fields also proven!

▲ □ ▶ ▲ □ ▶ ▲ □

- The proof of the analogue of Fermat's Last Theorem for function fields takes half a page!
- The *abc*-conjecture has been proven!
- Riemann Hypothesis analogue for function fields also proven!
- Every function field is isomorphic to a non-singular projective curve, so we can compute the genus of the function field.

(日)

- The proof of the analogue of Fermat's Last Theorem for function fields takes half a page!
- The *abc*-conjecture has been proven!
- Riemann Hypothesis analogue for function fields also proven!
- Every function field is isomorphic to a non-singular projective curve, so we can compute the genus of the function field.
- Still, questions on class numbers of function fields are VERY HARD.

(日)

Theorem (Pacelli, Rosen)

Let m be any positive integer, m > 1 and $3 \nmid m$. There are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by 3.

Let m be any positive integer, m > 1 and $5 \nmid m$. There are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by 5.

< 同 > < 三 > <

Let m be any positive integer, m > 1 and $5 \nmid m$. There are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by 5.

Let ζ be a root of the polynomial $X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_q[X]$, and assume the following conditions on q are true:

Let m be any positive integer, m > 1 and $5 \nmid m$. There are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by 5.

Let ζ be a root of the polynomial $X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_q[X]$, and assume the following conditions on q are true:

•
$$q \equiv 4 \pmod{5}, q \nmid m$$

A (B) + A (B) + A (B) +

Let m be any positive integer, m > 1 and $5 \nmid m$. There are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by 5.

Let ζ be a root of the polynomial $X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_q[X]$, and assume the following conditions on q are true:

- $q \equiv 4 \pmod{5}, q \nmid m$
- there exists $\gamma \in \mathbb{F}_q^{\times}$ such that $\gamma + 5\zeta$ is not a *p*-th power in $\mathbb{F}_q(\zeta)$ for all primes *p* dividing *m*

(日)

Let m be any positive integer, m > 1 and $5 \nmid m$. There are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by 5.

Let ζ be a root of the polynomial $X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_q[X]$, and assume the following conditions on q are true:

- $q \equiv 4 \pmod{5}, q \nmid m$
- there exists $\gamma \in \mathbb{F}_q^{\times}$ such that $\gamma + 5\zeta$ is not a *p*-th power in $\mathbb{F}_q(\zeta)$ for all primes *p* dividing *m*

• if
$$4|m$$
, then $\gamma+5\zeta
otin -4\mathbb{F}_q(\zeta)^4$

(日)

Constructing the Fields

The Recursion Relation

Define $X_0 = T$ and

$$X_{j} = \frac{X_{j-1}^{5} - 10X_{j-1}^{3} + 10\omega X_{j-1}^{2} + 5\omega X_{j-1} - 1}{5X_{j-1}(X_{j-1}^{3} - 2\omega X_{j-1}^{2} - 2\omega X_{j-1} + 1)},$$

for $j \geq 1$ and $\omega \in \mathbb{F}_q(T)$ such that $\omega^2 + \omega - 1 = 0$.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

The Recursion Relation

Define $X_0 = T$ and

$$X_{j} = \frac{X_{j-1}^{5} - 10X_{j-1}^{3} + 10\omega X_{j-1}^{2} + 5\omega X_{j-1} - 1}{5X_{j-1}(X_{j-1}^{3} - 2\omega X_{j-1}^{2} - 2\omega X_{j-1} + 1)},$$

for $j \geq 1$ and $\omega \in \mathbb{F}_q(T)$ such that $\omega^2 + \omega - 1 = 0$.

The Field of Degree m

Fix $n \ge 1$. For $1 \le i \le n$, define

$$N_i = \mathbb{F}_q(X_{n-i})$$
$$M_i = \mathbb{F}_q(X_{n-i}, \sqrt[m]{5X_n + \gamma}).$$

Let $L_n = \mathbb{F}_q(T)(\sqrt[m]{5X_n + \gamma}) = M_n$.

Field Diagram

$$N_i = \mathbb{F}_q(X_{n-i}) \text{ and } M_i = \mathbb{F}_q(X_{n-i}, \sqrt[m]{5X_n + \gamma})$$

Polynomials

Definition of fp's

Let p be a divisor of m such that either p is prime or p = 4. Define

$$\begin{split} f_p(\mathbf{x}) &= 5 \sum_{\substack{i=0\\i\equiv 0(5)}}^p \binom{p}{i} \mathbf{x}^{p-i} - \gamma \sum_{\substack{i=0\\i\equiv 1(5)}}^p \binom{p}{i} \mathbf{x}^{p-i} - (5+\gamma\omega) \sum_{\substack{i=0\\i\equiv 2(5)}}^p \binom{p}{i} \mathbf{x}^{p-i} \\ &+ \omega(\gamma-5) \sum_{\substack{i=0\\i\equiv 3(5)}}^p \binom{p}{i} \mathbf{x}^{p-i} + (\gamma+5\omega) \sum_{\substack{i=0\\i\equiv 4(5)}}^p \binom{p}{i} \mathbf{x}^{p-i} \\ f_4(\mathbf{x}) &= \mathbf{x}^4 - \frac{4}{5} \gamma \mathbf{x}^3 - (\frac{6}{5} \gamma \omega + 6) \mathbf{x}^2 + 4\omega (\frac{1}{5} \gamma - 1) \mathbf{x} + (\omega + \frac{\gamma}{5}) \end{split}$$

Fact: Each $f_p(x)$ is Eisenstein with respect to the chosen prime $\mathfrak{p} \subset \mathbb{Q}(\omega)$ lying over p, and thus each $f_p(x)$ is irreducible over $\mathbb{Q}(\omega)$.

The Rest of the Proof

 Reduce the problem to showing that f_p(x) has no roots mod q.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Rest of the Proof

Reduce the problem to showing that f_p(x) has no roots mod q.

Theorem (Jordan)

Let *G* be a group acting on a finite set *X* with cardinality *n*. If $n \ge 2$ and *G* acts transitively on *X*, then there is an element $g \in G$ which acts on *X* without a fixed point.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

The Rest of the Proof

Reduce the problem to showing that f_p(x) has no roots mod q.

Theorem (Jordan)

Let *G* be a group acting on a finite set *X* with cardinality *n*. If $n \ge 2$ and *G* acts transitively on *X*, then there is an element $g \in G$ which acts on *X* without a fixed point.

Theorem (Frobenius)

Let f be an irreducible polynomial over $\mathbb{Q}(\omega)$ with Galois group G. The density of primes q for which f has no roots mod q exists, and is equal to 1/|G| times the number of $\sigma \in G$ with no fixed points.

● How can we generalize this result to an arbitrary prime *l*?

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

- How can we generalize this result to an arbitrary prime ℓ ?
- The $\ell = 5$ case relied heavily on creating the chain of cyclic quintic extensions:

$$N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{n-1} \subseteq N_n = \mathbb{F}_q(T).$$

< 🗇 > < 🖻 > < 🖻

- How can we generalize this result to an arbitrary prime ℓ ?
- The l = 5 case relied heavily on creating the chain of cyclic quintic extensions:

$$N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{n-1} \subseteq N_n = \mathbb{F}_q(T).$$

So, in order to use the same techniques in general, we need a polynomial that generates cyclic extensions of degree ℓ .

- How can we generalize this result to an arbitrary prime ℓ ?
- The l = 5 case relied heavily on creating the chain of cyclic quintic extensions:

$$N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{n-1} \subseteq N_n = \mathbb{F}_q(T).$$

So, in order to use the same techniques in general, we need a polynomial that generates cyclic extensions of degree ℓ .

Rikuna showed that the splitting field of the following polynomial has Galois group Z/ℓZ over k(T) for certain fields k:

$$\frac{\zeta^{-1}(X-\zeta)^{\ell}-\zeta(X-\zeta^{-1})^{\ell}}{\zeta^{-1}-\zeta}-T\frac{(X-\zeta)^{\ell}-(X-\zeta^{-1})^{\ell}}{\zeta^{-1}-\zeta}$$

A (10) A (10)

Let ℓ be a prime and m > 1 be any positive integer such that $\ell \nmid m$. Then there are a positive density of primes (and prime powers) q such that for a given rational function field $\mathbb{F}_q(T)$, there are infinitely many function fields of degree m over $\mathbb{F}_q(T)$ with divisor class number indivisible by ℓ .

イロト イヨト イヨト イヨト

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

・ロ・ ・ 四・ ・ 回・ ・ 回・

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

For a particular q, we need the following conditions satisfied for the theorem to hold:

・ロ・ ・ 四・ ・ 回・ ・ 回・

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

For a particular q, we need the following conditions satisfied for the theorem to hold:

• $\zeta \notin \mathbb{F}_q$, more precisely g(X) has no roots mod q;

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

For a particular q, we need the following conditions satisfied for the theorem to hold:

- $\zeta \notin \mathbb{F}_q$, more precisely g(X) has no roots mod q;
- $\omega \in \mathbb{F}_q$, more precisely h(X) splits completely mod q;

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

For a particular q, we need the following conditions satisfied for the theorem to hold:

- $\zeta \notin \mathbb{F}_q$, more precisely g(X) has no roots mod q;
- $\omega \in \mathbb{F}_q$, more precisely h(X) splits completely mod q;
- char \mathbb{F}_q does not divide m;

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

For a particular q, we need the following conditions satisfied for the theorem to hold:

- $\zeta \notin \mathbb{F}_q$, more precisely g(X) has no roots mod q;
- $\omega \in \mathbb{F}_q$, more precisely h(X) splits completely mod q;
- char \mathbb{F}_q does not divide m;
- There exists $\gamma \in \mathbb{F}_q^{\times}$ such that $\gamma + \ell \zeta$ is not a *p*-th power in $\mathbb{F}_q(\zeta)$ for all primes *p* dividing *m*;

Let ζ be a root of $g(X) = X^{\ell-1} + X^{\ell-2} + \cdots + X + 1$ and let h(X) be the minimal polynomial of $\omega = \zeta + \zeta^{-1}$.

For a particular q, we need the following conditions satisfied for the theorem to hold:

- $\zeta \notin \mathbb{F}_q$, more precisely g(X) has no roots mod q;
- $\omega \in \mathbb{F}_q$, more precisely h(X) splits completely mod q;
- char \mathbb{F}_q does not divide m;
- There exists $\gamma \in \mathbb{F}_q^{\times}$ such that $\gamma + \ell \zeta$ is not a *p*-th power in $\mathbb{F}_q(\zeta)$ for all primes *p* dividing *m*;

• If
$$4|m$$
, then $\gamma + \ell \zeta \notin -4\mathbb{F}_q(\zeta)^4$.

Constructing the Fields: Revisited

The Recursion Relation

Define $X_0 = T$ and

$$X_{j} = \frac{\zeta^{-1} (X_{j-1} - \zeta)^{\ell} - \zeta (X_{j-1} - \zeta^{-1})^{\ell}}{(X_{j-1} - \zeta)^{\ell} - (X_{j-1} - \zeta^{-1})^{\ell}},$$

for $j \ge 1$.

Constructing the Fields: Revisited

The Recursion Relation

Define $X_0 = T$ and

$$X_{j} = \frac{\zeta^{-1} (X_{j-1} - \zeta)^{\ell} - \zeta (X_{j-1} - \zeta^{-1})^{\ell}}{(X_{j-1} - \zeta)^{\ell} - (X_{j-1} - \zeta^{-1})^{\ell}},$$

for $j \ge 1$.

The Field of Degree m

Fix $n \ge 1$. For $1 \le i \le n$, define

$$N_i = \mathbb{F}_q(X_{n-i})$$
$$M_i = \mathbb{F}_q(X_{n-i}, \sqrt[m]{\ell X_n + \gamma}).$$

Let $L_n = \mathbb{F}_q(T)(\sqrt[m]{\ell X_n + \gamma}) = M_n$.

(日) (四) (三) (三)

Field Diagram

$$N_i = \mathbb{F}_q(X_{n-i})$$
 and $M_i = \mathbb{F}_q(X_{n-i}, \sqrt[m]{\ell X_n + \gamma})$

• Recall: We want $\ell\zeta + \gamma \notin \mathbb{F}_q(\zeta)^p$ for all p dividing m and $\ell\zeta + \gamma \notin -4\mathbb{F}_q(\zeta)^4$ if $4 \mid m$.

Algebraic Number Theory Group - SMALL '08 Function Fields with Class Number Indivisible by a prime ℓ

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

- Recall: We want $\ell \zeta + \gamma \notin \mathbb{F}_q(\zeta)^p$ for all p dividing m and $\ell \zeta + \gamma \notin -4\mathbb{F}_q(\zeta)^4$ if $4 \mid m$.
- For p a prime or p = 4, define a polynomial $f_p(X) \in \mathbb{Q}(\omega)[X]$ as follows:

$$f_p(X) = \sum_{\substack{j=0\\i\equiv j}}^{\ell-1} \sum_{\substack{i=0\\i\equiv j}}^{p} \binom{p}{i} (a_j \gamma + a_{j-1} \ell) X^{p-i}$$

where $a_j = (\zeta^j - \zeta^{-j})/(\zeta - \zeta^{-1})$ and γ is chosen to make f_p Eisenstein for each $p \mid m$.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

- Recall: We want $\ell \zeta + \gamma \not\in \mathbb{F}_q(\zeta)^p$ for all p dividing m and $\ell \zeta + \gamma \not\in -4\mathbb{F}_q(\zeta)^4$ if $4 \mid m$.
- For p a prime or p = 4, define a polynomial $f_p(X) \in \mathbb{Q}(\omega)[X]$ as follows:

$$f_p(X) = \sum_{\substack{j=0\\i\equiv j}}^{\ell-1} \sum_{\substack{i=0\\i\equiv j}}^{p} \binom{p}{i} (a_j \gamma + a_{j-1} \ell) X^{p-i}$$

where $a_j = (\zeta^j - \zeta^{-j})/(\zeta - \zeta^{-1})$ and γ is chosen to make f_p Eisenstein for each $p \mid m$.

 The polynomial *f_p* was chosen so that if *f_p* has no roots mod *q*, then ℓζ + γ ∉ 𝔽_{*q*}(ζ)^{*p*}, and if *f*₄ has no roots mod *q*, then ℓζ + γ ∉ −4𝔽_{*q*}(ζ)⁴.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

- Recall: We want $\ell \zeta + \gamma \not\in \mathbb{F}_q(\zeta)^p$ for all p dividing m and $\ell \zeta + \gamma \not\in -4\mathbb{F}_q(\zeta)^4$ if $4 \mid m$.
- For p a prime or p = 4, define a polynomial $f_p(X) \in \mathbb{Q}(\omega)[X]$ as follows:

$$f_p(X) = \sum_{\substack{j=0\\i\equiv j}}^{\ell-1} \sum_{\substack{i=0\\i\equiv j}}^{p} \binom{p}{i} (a_j \gamma + a_{j-1} \ell) X^{p-i}$$

where $a_j = (\zeta^j - \zeta^{-j})/(\zeta - \zeta^{-1})$ and γ is chosen to make f_p Eisenstein for each $p \mid m$.

- The polynomial *f_p* was chosen so that if *f_p* has no roots mod *q*, then ℓζ + γ ∉ 𝔽_{*q*}(ζ)^{*p*}, and if *f*₄ has no roots mod *q*, then ℓζ + γ ∉ −4𝔽_{*q*}(ζ)⁴.
- The remainder of the proof is identical to the $\ell = 5$ case.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ
Thank You

The methods used in the function field case do not generalize to number fields.

<日</th>

The methods used in the function field case do not generalize to number fields.

Function fields have nonzero characteristic, hence we can choose *q* so that F_q will have certain useful properties, such as ω ∈ F_q and ζ ∉ F_q. Number fields always have characteristic 0, and the base field is always Q.

• (10) • (10)

The methods used in the function field case do not generalize to number fields.

- Function fields have nonzero characteristic, hence we can choose *q* so that 𝔽_q will have certain useful properties, such as ω ∈ 𝔽_q and ζ ∉ 𝔽_q. Number fields always have characteristic 0, and the base field is always ℚ.
- In the function field case, we can construct a chain of fields

$$N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{n-1} \subseteq N_n = \mathbb{F}_q(T)$$

leading up to the base field $\mathbb{F}_q(T)$. In number fields, the base field \mathbb{Q} has no proper nontrivial subfields.

(4月) (1日) (日)

The methods used in the function field case do not generalize to number fields.

- Function fields have nonzero characteristic, hence we can choose *q* so that 𝔽_q will have certain useful properties, such as ω ∈ 𝔽_q and ζ ∉ 𝔽_q. Number fields always have characteristic 0, and the base field is always ℚ.
- In the function field case, we can construct a chain of fields

$$N_1 \subseteq N_2 \subseteq \cdots \subseteq N_{n-1} \subseteq N_n = \mathbb{F}_q(T)$$

leading up to the base field $\mathbb{F}_q(T)$. In number fields, the base field \mathbb{Q} has no proper nontrivial subfields.

• Tools used in the function field case are unavailable in the number field case, such as the genus of a curve and the Riemann-Hurwitz equation.

(日)