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Definitions: Number Field & Ring of Integers

Definition
A number field is a finite extension of Q.

Definition
A complex number is an algebraic integer if it is a root of
some monic polynomial with coefficients in Z.

Definition
The ring of integers of a number field K , denoted by OK , is
the set of all algebraic integers in K .

OK ⊂ K

| |
Z ⊂ Q
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Is OK a Unique Factorization Domain?

Remark
OK is not always a UFD.

Example

Let K = Q(
√
−6). Then OK = Z[

√
−6], and

−2 · 3 = −6 = (
√
−6)2

but 2, 3, and
√
−6 are irreducible in Z[

√
−6].

Thus, Z[
√
−6] is not a UFD.
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Unique Factorization of Ideals

Remark
OK is a Dedekind domain for any number field K .

Theorem
Every proper ideal in a Dedekind domain factors uniquely into a
product of prime ideals.

Example

Let K = Q(
√
−6). Then OK = Z[

√
−6].

〈−2〉 = 〈2,
√
−6〉2

〈3〉 = 〈3,
√
−6〉2

〈
√
−6〉 = 〈2,

√
−6〉〈3,

√
−6〉

Note 〈−6〉 = 〈−2〉〈3〉 = 〈
√
−6〉2 = 〈2,

√
−6〉2〈3,

√
−6〉2.
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Class Group & Class Number

Equivalence Relation
Nonzero ideals I ∼ J if aI = bJ for some nonzero a, b ∈ OK .

Theorem
The equivalence classes under ∼ form a finite abelian group,
called the class group, denoted by ClK . The size of the class
group is called the class number, denoted by hK .

Group operation: [I ] ∗ [J ] = [IJ ].
Associativity: X

Identity: the equivalence class of principal ideals.
Inverses: hard
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What does the class number tell us?

Since the identity element of ClK is the class of principal
ideals, then hK = 1 if and only if OK is a principal ideal
domain (PID).

A PID is always a UFD, so OK is a UFD if hK = 1.

Theorem
For Dedekind domains, UFD ⇔ PID.

Thus, OK is a UFD if and only if hK = 1.

Roughly, the class number measures the closeness of OK

to being a UFD.
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Class Numbers of Quadratic Fields:

d 2 3 5 6 7 10 11 13 14 15 17 19 21
ClQ(

√
d) 1 1 1 1 1 2 1 1 1 2 1 1 1

ClQ(
√
−d) 1 1 2 2 1 2 1 2 4 2 4 1 4

Theorem

The class number of Q(
√

d), d < 0, is 1 if and only if
d = −1,−2,−3,−7,−11,−19,−43,−67 or −163.

Open Question
Are there infinitely many real quadratic number fields with class
number one?
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Function Fields

Definition
A function field (in one variable) over a finite field F is a field
K , containing F and at least one transcendental element T over
F, such that K /F(T ) is a finite algebraic extension.

Note that F(T ) is the field of fractions of polynomials in T

over F.
We can define the ring of integers of K in the same way as
for number fields.
The ring of integers of F(T ) is F[T ], the ring of polynomials
in T over F.
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Number Fields vs. Function Fields

Number Field Function Field
OK ⊂ K

| |
Z ⊂ Q

OK ⊂ K

| |
Fq[T ] ⊂ Fq(T )

Z Fq[T ]
UFD yes yes
irreducibles (infinitely many) primes (infinitely many)

irreducible polynomials
units {±1} (finitely many) F×q (finitely many)
residue class |Z/nZ| = |n|

∣∣Fq[T ]/f Fq[T ]
∣∣ = qdeg f
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Cool Things about Function Fields

The proof of the analogue of Fermat’s Last Theorem for
function fields takes half a page!
The abc-conjecture has been proven!
Riemann Hypothesis analogue for function fields also
proven!
Every function field is isomorphic to a non-singular
projective curve, so we can compute the genus of the
function field.
Still, questions on class numbers of function fields are
VERY HARD.
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The Case ` = 3

Theorem (Pacelli, Rosen)
Let m be any positive integer, m > 1 and 3 - m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T ) with divisor class
number indivisible by 3.
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The Case ` = 5

Theorem
Let m be any positive integer, m > 1 and 5 - m. There are a
positive density of primes (and prime powers) q such that for a
given rational function field Fq(T ), there are infinitely many
function fields of degree m over Fq(T ) with divisor class
number indivisible by 5.

Let ζ be a root of the polynomial X 4 + X 3 + X 2 + X + 1 ∈ Fq[X ],
and assume the following conditions on q are true:

q ≡ 4 (mod 5), q - m

there exists γ ∈ F×q such that γ + 5ζ is not a p-th power in
Fq(ζ) for all primes p dividing m

if 4|m, then γ + 5ζ /∈ −4Fq(ζ)4
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Constructing the Fields

The Recursion Relation
Define X0 = T and

Xj =
X 5

j−1 − 10X 3
j−1 + 10ωX 2

j−1 + 5ωXj−1 − 1

5Xj−1(X 3
j−1 − 2ωX 2

j−1 − 2ωXj−1 + 1)
,

for j ≥ 1 and ω ∈ Fq(T ) such that ω2 + ω − 1 = 0.

The Field of Degree m

Fix n ≥ 1. For 1 ≤ i ≤ n, define

Ni = Fq(Xn−i)

Mi = Fq(Xn−i,
m
√

5Xn + γ).

Let Ln = Fq(T )( m
√

5Xn + γ) = Mn.
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Field Diagram

Ni = Fq(Xn−i) and Mi = Fq(Xn−i,
m
√

5Xn + γ)

Mn = Ln

5Fq(T ) = Nn

m ggggggggggggg

5 Mn−1

5Nn−1

m ggggggggggg

5
...

5...
5 M2

5N2

m gggggggggggg

5 M1

N1

m gggggggggggg
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Polynomials

Definition of fp ’s

Let p be a divisor of m such that either p is prime or p = 4.
Define

fp(x) = 5

p∑
i=0

i≡0(5)

(
p

i

)
xp−i − γ

p∑
i=0

i≡1(5)

(
p

i

)
xp−i − (5 + γω)

p∑
i=0

i≡2(5)

(
p

i

)
xp−i

+ ω(γ − 5)
p∑

i=0
i≡3(5)

(
p

i

)
xp−i + (γ + 5ω)

p∑
i=0

i≡4(5)

(
p

i

)
xp−i

f4(x) = x4 − 4

5
γx3 − (

6

5
γω + 6)x2 + 4ω(

1

5
γ − 1)x + (ω +

γ

5
)

Fact: Each fp(x) is Eisenstein with respect to the chosen prime
p ⊂ Q(ω) lying over p, and thus each fp(x) is irreducible over
Q(ω).
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The Rest of the Proof

Reduce the problem to showing that fp(x) has no roots
mod q.

Theorem (Jordan)
Let G be a group acting on a finite set X with cardinality n. If
n ≥ 2 and G acts transitively on X , then there is an element
g ∈ G which acts on X without a fixed point.

Theorem (Frobenius)

Let f be an irreducible polynomial over Q(ω) with Galois group
G. The density of primes q for which f has no roots mod q

exists, and is equal to 1/|G| times the number of σ ∈ G with no
fixed points.
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What about other values of `?

How can we generalize this result to an arbitrary prime `?

The ` = 5 case relied heavily on creating the chain of cyclic
quintic extensions:

N1 ⊆ N2 ⊆ · · · ⊆ Nn−1 ⊆ Nn = Fq(T ).

So, in order to use the same techniques in general, we
need a polynomial that generates cyclic extensions of
degree `.
Rikuna showed that the splitting field of the following
polynomial has Galois group Z/`Z over k(T ) for certain
fields k:

ζ−1(X − ζ)` − ζ(X − ζ−1)`

ζ−1 − ζ
− T

(X − ζ)` − (X − ζ−1)`

ζ−1 − ζ
.
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The General Case

Theorem
Let ` be a prime and m > 1 be any positive integer such that
` - m. Then there are a positive density of primes (and prime
powers) q such that for a given rational function field Fq(T ),
there are infinitely many function fields of degree m over Fq(T )
with divisor class number indivisible by `.
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Conditions on q

Let ζ be a root of g(X ) = X `−1 + X `−2 + · · ·+ X + 1 and let
h(X ) be the minimal polynomial of ω = ζ + ζ−1.

For a particular q, we need the following conditions satisfied for
the theorem to hold:

ζ 6∈ Fq, more precisely g(X ) has no roots mod q;

ω ∈ Fq, more precisely h(X ) splits completely mod q;

char Fq does not divide m;

There exists γ ∈ F×q such that γ + `ζ is not a p-th power in
Fq(ζ) for all primes p dividing m;

If 4|m, then γ + `ζ /∈ −4Fq(ζ)4.
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Constructing the Fields: Revisited

The Recursion Relation
Define X0 = T and

Xj =
ζ−1(Xj−1 − ζ)` − ζ(Xj−1 − ζ−1)`

(Xj−1 − ζ)` − (Xj−1 − ζ−1)`
,

for j ≥ 1.

The Field of Degree m

Fix n ≥ 1. For 1 ≤ i ≤ n, define

Ni = Fq(Xn−i)

Mi = Fq(Xn−i,
m
√

`Xn + γ).

Let Ln = Fq(T )( m
√

`Xn + γ) = Mn.
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Field Diagram

Ni = Fq(Xn−i) and Mi = Fq(Xn−i,
m
√

`Xn + γ)

Mn = Ln

`Fq(T ) = Nn

m ggggggggggggg

` Mn−1

`Nn−1

m ggggggggggg

`
...

`...
` M2

`N2

m gggggggggggg

` M1

N1

m gggggggggggg
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Proving there are infinitely many q

Recall: We want `ζ + γ 6∈ Fq(ζ)p for all p dividing m and
`ζ + γ 6∈ −4Fq(ζ)4 if 4 | m.

For p a prime or p = 4, define a polynomial
fp(X ) ∈ Q(ω)[X ] as follows:

fp(X ) =
`−1∑
j=0

p∑
i=0
i≡j

(
p

i

)
(ajγ + aj−1`)X p−i

where aj = (ζ j − ζ−j)/(ζ − ζ−1) and γ is chosen to make fp
Eisenstein for each p | m.
The polynomial fp was chosen so that if fp has no roots
mod q, then `ζ + γ 6∈ Fq(ζ)p, and if f4 has no roots mod q,
then `ζ + γ 6∈ −4Fq(ζ)4.
The remainder of the proof is identical to the ` = 5 case.
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Thank You
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Analogous Result for Number Fields?

The methods used in the function field case do not generalize
to number fields.

Function fields have nonzero characteristic, hence we can
choose q so that Fq will have certain useful properties,
such as ω ∈ Fq and ζ 6∈ Fq. Number fields always have
characteristic 0, and the base field is always Q.
In the function field case, we can construct a chain of fields

N1 ⊆ N2 ⊆ · · · ⊆ Nn−1 ⊆ Nn = Fq(T )

leading up to the base field Fq(T ). In number fields, the
base field Q has no proper nontrivial subfields.
Tools used in the function field case are unavailable in the
number field case, such as the genus of a curve and the
Riemann-Hurwitz equation.
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