Gassmann Equivalent Dessins

Mona Merling

Department of Mathematics
Bard College

Research conducted at
Louisiana State University
5th of January 2007

Dessins d'enfants

Definition

A bicolored dessin d'enfant, or dessin for short, is a pair of permutations σ_{0}, σ_{1} of n objects called edges.

- To each cycle in σ_{0} draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_{1} drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Dessins d'enfants

Definition

A bicolored dessin d'enfant, or dessin for short, is a pair of permutations σ_{0}, σ_{1} of n objects called edges.

- To each cycle in σ_{0} draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_{1} drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Dessins d'enfants

Definition

A bicolored dessin d'enfant, or dessin for short, is a pair of permutations σ_{0}, σ_{1} of n objects called edges.

- To each cycle in σ_{0} draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_{1} drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (binartite) graph with a
counterclockwise cyclic ordering of the edges at each vertex

Dessins d'enfants

Definition

A bicolored dessin d'enfant, or dessin for short, is a pair of permutations σ_{0}, σ_{1} of n objects called edges.

- To each cycle in σ_{0} draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_{1} drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a
counterclockwise cyclic ordering of the edges at each
vertex.

Dessins d'enfants

Definition

A bicolored dessin d'enfant, or dessin for short, is a pair of permutations σ_{0}, σ_{1} of n objects called edges.

- To each cycle in σ_{0} draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_{1} drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Example

Example

G=simple group of order 168. $H \leq G$ a subgroup of index 7 . Magma gives us the following presentation of G : $G=<x, y, z: x^{2}=1, y^{3}=1, z=x y, z^{7}=1>$

The action of x on the 7 cosets G / H gives the permutation $\sigma_{0}=(1)(24)(3)(5)(67)$ and similarly the action of y on G / H gives the permutation $\sigma_{1}=(123)(456)(7)$ The permutations σ_{0}, σ_{1} give rise to the following dessin:

Example

Example

$G=$ simple group of order $168 . H \leq G$ a subgroup of index 7 . Magma gives us the following presentation of G :

$$
G=<x, y, z: x^{2}=1, y^{3}=1, z=x y, z^{7}=1>
$$

The action of x on the 7 cosets G / H gives the permutation $\sigma_{0}=(1)(24)(3)(5)(67)$ and similarly the action of y on G/H gives the permutation $\sigma_{1}=(123)(456)(7)$

Example

Example

$G=$ simple group of order $168 . H \leq G$ a subgroup of index 7 . Magma gives us the following presentation of G :

$$
G=<x, y, z: x^{2}=1, y^{3}=1, z=x y, z^{7}=1>
$$

The action of x on the 7 cosets G / H gives the permutation $\sigma_{0}=(1)(24)(3)(5)(67)$ and similarly the action of y on G/H gives the permutation $\sigma_{1}=(123)(456)(7)$
The permutations σ_{0}, σ_{1} give rise to the following dessin:

Example

Example

$G=$ simple group of order $168 . H \leq G$ a subgroup of index 7 . Magma gives us the following presentation of G :

$$
G=<x, y, z: x^{2}=1, y^{3}=1, z=x y, z^{7}=1>
$$

The action of x on the 7 cosets G / H gives the permutation $\sigma_{0}=(1)(24)(3)(5)(67)$ and similarly the action of y on G/H gives the permutation $\sigma_{1}=(123)(456)(7)$
The permutations σ_{0}, σ_{1} give rise to the following dessin:

Example

This group G has another subgroup H^{\prime} of index 7 with H^{\prime} not conjugate to H. The actions of x and y on G / H^{\prime} give two permutations $\sigma_{0}^{\prime}=(1)(24)(3)(57)(6)$ and $\sigma_{1}^{\prime}=(123)(456)(7)$.
This gives a second dessin. The two dessins together are:

$$
\begin{array}{cl}
\sigma_{0}=(1)(24)(3)(5)(67) & \sigma_{0}^{\prime}=(1)(24)(3)(57)(6) \\
\sigma_{1}=(123)(456)(7) & \sigma_{1}^{\prime}=(123)(456)(7)
\end{array}
$$

Gassmann Triples

Definition

Let G be a group and let H and H^{\prime} be two subgroups of G. (G, H, H^{\prime}) is a Gassmann triple if for each $g \in G$ the number of fixed points of g acting on G / H is the same as the number of fixed points of g acting on G / H^{\prime}.

Gassmann Triples

Definition

Let G be a group and let H and H^{\prime} be two subgroups of G.
(G, H, H^{\prime}) is a Gassmann triple if for each $g \in G$ the number of fixed points of g acting on G / H is the same as the number of fixed points of g acting on G / H^{\prime}.

Definition

Gassmann equivalent dessins are bipartite dessins $\mathbb{D}\left(G / H, g_{0}, g_{1}\right)$ and $\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right)$ that arise from two chosen elements g_{0} and g_{1} in G acting by left multiplication on the coset spaces G / H and G / H^{\prime} where $\left(G, H, H^{\prime}\right)$ is a Gassmann triple.

Branching data

Definition

Branching data for a dessin \mathbb{D} given by σ_{0}, σ_{1} is the triple of cycle structures

$$
\text { (c.s. } \left.\left(\sigma_{0}\right), \text { c.s. }\left(\sigma_{1}\right), \text { c.s. }\left(\sigma_{1}^{-1} \sigma_{0}^{-1}\right)\right) \text {. }
$$

Theorem
If $\left(G, H, H^{\prime}\right)$ is a Gassmann triple, then the branching data for $\mathbb{D}\left(G / H, g_{0}, g_{1}\right)$ and $\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right)$ coincide.

Branching data

Definition

Branching data for a dessin \mathbb{D} given by σ_{0}, σ_{1} is the triple of cycle structures

$$
\text { (c.s. } \left.\left(\sigma_{0}\right), \text { c.s. }\left(\sigma_{1}\right), \text { c.s. }\left(\sigma_{1}^{-1} \sigma_{0}^{-1}\right)\right) \text {. }
$$

Theorem

If $\left(G, H, H^{\prime}\right)$ is a Gassmann triple, then the branching data for $\mathbb{D}\left(G / H, g_{0}, g_{1}\right)$ and $\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right)$ coincide.

Branching data

Definition

Branching data for a dessin \mathbb{D} given by σ_{0}, σ_{1} is the triple of cycle structures

$$
\text { (c.s. } \left.\left(\sigma_{0}\right), \text { c.s. }\left(\sigma_{1}\right), \text { c.s. }\left(\sigma_{1}^{-1} \sigma_{0}^{-1}\right)\right) \text {. }
$$

Theorem

If $\left(G, H, H^{\prime}\right)$ is a Gassmann triple, then the branching data for $\mathbb{D}\left(G / H, g_{0}, g_{1}\right)$ and $\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right)$ coincide.

Components

Theorem

- The number of components of a dessin is the number of orbits of $<\sigma_{0}, \sigma_{1}>$.
- Gassmann equivalent dessins have the same number of components.

Genera

Definition

The genus of a connected dessin \mathbb{D} is the number γ given by

$$
2 n-\sum(\text { length }(c)-1)=2-2 \gamma
$$

where $n=\#$ of edges and c runs over all cycles in σ_{0}, σ_{1}, and $\sigma_{1}^{-1} \sigma_{0}^{-1}$.

Genera

Definition

The genus of a connected dessin \mathbb{D} is the number γ given by

$$
2 n-\sum(\text { length }(c)-1)=2-2 \gamma
$$

where $n=\#$ of edges and c runs over all cycles in σ_{0}, σ_{1}, and $\sigma_{1}^{-1} \sigma_{0}^{-1}$.

Theorem

If $\left(G, H, H^{\prime}\right)$ is a Gassmann triple, then $\sum_{i=1}^{k} \gamma_{i}=\sum_{i=1}^{k} \gamma_{i}^{\prime}$ where k is the number of components of $\mathbb{D}\left(G / H, g_{0}, g_{1}\right)$ and $\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right), \gamma_{i}$ denotes the genus of the i-th component of $\mathbb{D}\left(G / H, g_{0}, g_{1}\right)$ and γ_{i}^{\prime} denotes the genus of the i-th component of $\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right)$

Genera

Genera of disconnected Gassmann Equivalent Dessins

Question: Do the individual genera of the components match?

Genera

Genera of disconnected Gassmann Equivalent Dessins

Question: Do the individual genera of the components match?
NO!

Genera of disconnected Gassmann Equivalent Dessins

Question: Do the individual genera of the components match?

NO!

Example
$G=G L_{2}\left(\mathbb{F}_{5}\right) ;$
$H=\left\{\left.\left(\begin{array}{cc}a^{2} & x \\ 0 & c\end{array}\right) \right\rvert\, a^{2} c \neq 0\right\} \quad$ and $\quad H^{\prime}=\left\{\left.\left(\begin{array}{cc}c & x \\ 0 & a^{2}\end{array}\right) \right\rvert\, a^{2} c \neq 0\right\}$.
$\left(G, H, H^{\prime}\right)$ is a Gassmann triple of index 12.
Let $g_{0}=\left(\begin{array}{ll}3 & 1 \\ 3 & 0\end{array}\right) \quad$ and $\quad g_{1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$.

Genera

Example

$$
\begin{aligned}
& \mathbb{D}\left(G / H, g_{0}, g_{1}\right) \\
& \gamma_{1}+\gamma_{2}+\gamma_{3}= \\
& 1+1+0=2
\end{aligned}
$$

$\mathbb{D}\left(G / H^{\prime}, g_{0}, g_{1}\right)$
$\gamma_{1}^{\prime}+\gamma_{2}^{\prime}+\gamma_{3}^{\prime}=$
$2+0+0=2$

Open Questions

- What happens in the cases in which G has an outer automorphism that takes H to H^{\prime} ?
- Is it possible to define a Zeta Function for dessins such that Gassmann equivalent dessins have the same Zeta function??

Open Questions

- What happens in the cases in which G has an outer automorphism that takes H to H^{\prime} ?
- Is it possible to define a Zeta Function for dessins such that Gassmann equivalent dessins have the same Zeta function??

Open Questions

- What happens in the cases in which G has an outer automorphism that takes H to H^{\prime} ?
- Is it possible to define a Zeta Function for dessins such that Gassmann equivalent dessins have the same Zeta function??

