◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Gassmann Equivalent Dessins

Mona Merling

Department of Mathematics Bard College

Research conducted at Louisiana State University

5th of January 2007

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dessins d'enfants

Definition

- To each cycle in σ_0 draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_1 drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Definition

- To each cycle in σ_0 draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_1 drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Definition

- To each cycle in σ_0 draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_1 drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Definition

- To each cycle in σ_0 draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_1 drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

Definition

- To each cycle in σ_0 draw a white vertex sprouting whiskers labelled counterclockwise by the elements in that cycle.
- Do the same for each cycle in σ_1 drawing black vertices.
- Connect the whiskers with the same label to produce an edge connecting a black vertex to a white vertex.
- We obtain a bicolored (bipartite) graph with a counterclockwise cyclic ordering of the edges at each vertex.

lloccing	÷
Dessilis	5

Example

G=simple group of order 168. $H \le G$ a subgroup of index 7. Magma gives us the following presentation of *G*: $G = \langle x, y, z : x^2 = 1, y^3 = 1, z = xy, z^7 = 1 \rangle$

The action of *x* on the 7 cosets *G*/*H* gives the permutation $\sigma_0 = (1)(2 \ 4)(3)(5)(6 \ 7)$ and similarly the action of *y* on *G*/*H* gives the permutation $\sigma_1 = (1 \ 2 \ 3)(4 \ 5 \ 6)(7)$ The permutations σ_0 , σ_1 give rise to the following dessin:

Dessins	Branching data	Components and Genera	Open Questions
_			

Example

G=simple group of order 168. $H \le G$ a subgroup of index 7. Magma gives us the following presentation of *G*: $G = \langle x, y, z : x^2 = 1, y^3 = 1, z = xy, z^7 = 1 \rangle$

The action of *x* on the 7 cosets G/H gives the permutation $\sigma_0 = (1)(2 \ 4)(3)(5)(6 \ 7)$ and similarly the action of *y* on G/H gives the permutation $\sigma_1 = (1 \ 2 \ 3)(4 \ 5 \ 6)(7)$

The permutations σ_0, σ_1 give rise to the following dessin:

laceine
Dessina

Example

G=simple group of order 168. $H \le G$ a subgroup of index 7. Magma gives us the following presentation of *G*: $G = \langle x, y, z : x^2 = 1, y^3 = 1, z = xy, z^7 = 1 \rangle$

The action of *x* on the 7 cosets *G*/*H* gives the permutation $\sigma_0 = (1)(2 \ 4)(3)(5)(6 \ 7)$ and similarly the action of *y* on *G*/*H* gives the permutation $\sigma_1 = (1 \ 2 \ 3)(4 \ 5 \ 6)(7)$ The permutations σ_0 , σ_1 give rise to the following dessin:

laceine
Dessina

Example

G=simple group of order 168. $H \le G$ a subgroup of index 7. Magma gives us the following presentation of *G*: $G = \langle x, y, z : x^2 = 1, y^3 = 1, z = xy, z^7 = 1 \rangle$

The action of *x* on the 7 cosets *G*/*H* gives the permutation $\sigma_0 = (1)(2 \ 4)(3)(5)(6 \ 7)$ and similarly the action of *y* on *G*/*H* gives the permutation $\sigma_1 = (1 \ 2 \ 3)(4 \ 5 \ 6)(7)$ The permutations σ_0 , σ_1 give rise to the following dessin:

Example

This group *G* has another subgroup *H*' of index 7 with *H*' not conjugate to *H*. The actions of *x* and *y* on *G*/*H*' give two permutations $\sigma'_0 = (1)(2 \ 4)(3)(5 \ 7)(6)$ and $\sigma'_1 = (1 \ 2 \ 3)(4 \ 5 \ 6)(7)$. This gives a second dessin. The two dessins together are:

 $\begin{aligned} \sigma_0 &= (1)(2\ 4)(3)(5)(6\ 7) & \sigma_0' &= (1)(2\ 4)(3)(5\ 7)(6) \\ \sigma_1 &= (1\ 2\ 3)(4\ 5\ 6)(7) & \sigma_1' &= (1\ 2\ 3)(4\ 5\ 6)(7) \end{aligned}$

Gassmann Triples

Definition

Let *G* be a group and let *H* and *H'* be two subgroups of *G*. (*G*, *H*, *H'*) is a Gassmann triple if for each $g \in G$ the number of fixed points of *g* acting on *G*/*H* is the same as the number of fixed points of *g* acting on *G*/*H'*.

Definition

Gassmann equivalent dessins are bipartite dessins $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$ that arise from two chosen elements g_0 and g_1 in *G* acting by left multiplication on the coset spaces G/H and G/H' where (G, H, H') is a Gassmann triple.

Gassmann Triples

Definition

Let *G* be a group and let *H* and *H'* be two subgroups of *G*. (*G*, *H*, *H'*) is a Gassmann triple if for each $g \in G$ the number of fixed points of *g* acting on *G*/*H* is the same as the number of fixed points of *g* acting on *G*/*H'*.

Definition

Gassmann equivalent dessins are bipartite dessins $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$ that arise from two chosen elements g_0 and g_1 in *G* acting by left multiplication on the coset spaces G/H and G/H' where (G, H, H') is a Gassmann triple.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Branching data

Definition

Branching data for a dessin \mathbb{D} given by σ_0 , σ_1 is the triple of cycle structures

 $(c.s.(\sigma_0), c.s.(\sigma_1), c.s.(\sigma_1^{-1}\sigma_0^{-1})).$

Theorem

If (G, H, H') is a Gassmann triple, then the branching data for $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$ coincide.

Branching data

Definition

Branching data for a dessin \mathbb{D} given by σ_0 , σ_1 is the triple of cycle structures $(c.s.(\sigma_0), c.s.(\sigma_1), c.s.(\sigma_1^{-1}\sigma_0^{-1})).$

Theorem

If (G, H, H') is a Gassmann triple, then the branching data for $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$ coincide.

くしゃ 山田 ・山田 ・山田 ・ 山田 ・

Branching data

Definition

Branching data for a dessin \mathbb{D} given by σ_0 , σ_1 is the triple of cycle structures $(c.s.(\sigma_0), c.s.(\sigma_1), c.s.(\sigma_1^{-1}\sigma_0^{-1})).$

Theorem

If (G, H, H') is a Gassmann triple, then the branching data for $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$ coincide.

くしゃ 山田 ・山田 ・山田 ・ 山田 ・

J					
• •		0	\mathbf{c}	n	C
_	-	-			-

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Components

Theorem

- The number of components of a dessin is the number of orbits of < σ₀, σ₁ >.
- Gassmann equivalent dessins have the same number of components.

Dessins	Branching data	Components and Genera	Open Questions
Gonora			
Genera			
Genera			

Definition

The genus of a connected dessin \mathbb{D} is the number γ given by

$$2n - \sum (\text{length}(c) - 1) = 2 - 2\gamma$$

where *n*=# of edges and *c* runs over all cycles in σ_0 , σ_1 , and $\sigma_1^{-1}\sigma_0^{-1}$.

Theorem

If (G, H, H') is a Gassmann triple, then $\sum_{i=1}^{k} \gamma_i = \sum_{i=1}^{k} \gamma'_i$ where k is the number of components of $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$, γ_i denotes the genus of the i-th component of $\mathbb{D}(G/H, g_0, g_1)$ and γ'_i denotes the genus of the i-th component of $\mathbb{D}(G/H', g_0, g_1)$

Dessins	Branching data	Components and Genera	Open Questions
Genera			
Genera			

Definition

The genus of a connected dessin \mathbb{D} is the number γ given by

$$2n - \sum (\text{length}(c) - 1) = 2 - 2\gamma$$

where *n*=# of edges and *c* runs over all cycles in σ_0 , σ_1 , and $\sigma_1^{-1}\sigma_0^{-1}$.

Theorem

If (G, H, H') is a Gassmann triple, then $\sum_{i=1}^{k} \gamma_i = \sum_{i=1}^{k} \gamma'_i$ where k is the number of components of $\mathbb{D}(G/H, g_0, g_1)$ and $\mathbb{D}(G/H', g_0, g_1)$, γ_i denotes the genus of the *i*-th component of $\mathbb{D}(G/H, g_0, g_1)$ and γ'_i denotes the genus of the *i*-th component of $\mathbb{D}(G/H', g_0, g_1)$

Components and Genera $\circ \circ \bullet \circ$

Genera

Genera of disconnected Gassmann Equivalent Dessins

Question: Do the individual genera of the components match?

NO!

Example $G = GL_{2}(\mathbb{F}_{5});$ $H = \left\{ \begin{pmatrix} a^{2} & x \\ 0 & c \end{pmatrix} \mid a^{2}c \neq 0 \right\} \text{ and } H' = \left\{ \begin{pmatrix} c & x \\ 0 & a^{2} \end{pmatrix} \mid a^{2}c \neq 0 \right\}.$ (G, H, H') is a Gassmann triple of index 12.Let $g_{0} = \begin{pmatrix} 3 & 1 \\ 3 & 0 \end{pmatrix} \text{ and } g_{1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$

Genera

Genera of disconnected Gassmann Equivalent Dessins

Question: Do the individual genera of the components match?

NO!

Genera

Genera of disconnected Gassmann Equivalent Dessins

Question: Do the individual genera of the components match?

NO!

Example $G = GL_{2}(\mathbb{F}_{5});$ $H = \left\{ \begin{pmatrix} a^{2} & x \\ 0 & c \end{pmatrix} \mid a^{2}c \neq 0 \right\} \text{ and } H' = \left\{ \begin{pmatrix} c & x \\ 0 & a^{2} \end{pmatrix} \mid a^{2}c \neq 0 \right\}.$ (G, H, H') is a Gassmann triple of index 12.Let $g_{0} = \begin{pmatrix} 3 & 1 \\ 3 & 0 \end{pmatrix} \text{ and } g_{1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$

Components and Genera $\circ \circ \circ \bullet$

Genera

Example

 $\mathbb{D}(G/H, g_0, g_1)$ $\gamma_1 + \gamma_2 + \gamma_3 =$ 1 + 1 + 0 = 2

 $\mathbb{D}(G/H', g_0, g_1)$

 $\gamma_1' + \gamma_2' + \gamma_3' =$

2+0+0=2

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Open Questions

- What happens in the cases in which *G* has an outer automorphism that takes *H* to *H*'?
- Is it possible to define a Zeta Function for dessins such that Gassmann equivalent dessins have the same Zeta function??

(日) (日) (日) (日) (日) (日) (日)

Open Questions

- What happens in the cases in which *G* has an outer automorphism that takes *H* to *H*'?
- Is it possible to define a Zeta Function for dessins such that Gassmann equivalent dessins have the same Zeta function??

(ロ) (同) (三) (三) (三) (○) (○)

Open Questions

- What happens in the cases in which *G* has an outer automorphism that takes *H* to *H*'?
- Is it possible to define a Zeta Function for dessins such that Gassmann equivalent dessins have the same Zeta function??