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Lie Algebras over Finite Fields

Definition of Lie Algebra

Definition
Let L be an algebra over a field k . Then L is called a Lie
algebra over k if there exists a bilinear map

[, ] : L× L→ L

(called the bracket or commutator) such that:

1 [x , x ] = 0 for all x in L;
2 [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0 for all x , y , z in L.

(Jacobi identity)

Lie algebras are neither associative nor commutative
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Some Examples

Example

R3 with the Lie bracket given by the cross product of vectors

[x , y ] = x × y , for all x , y ∈ R3 .

Example

Let gl(n, k) be the vector space of all n × n matrices over k with
the Lie bracket defined by

[x , y ] = xy − yx ,

where the multiplication on the right is the usual product of
matrices.
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More Examples

Example

Let sl(2,C) be the vector space of all 2× 2 trace-free matrices
over C with the Lie bracket defined by

[x , y ] = xy − yx ,

where the multiplication on the right is the usual product of
matrices.

Example

Let sl(n, k) ⊆ gl(n, k) consist of the matrices of trace 0. sl(n, k)
is closed under the Lie bracket, and therefore it is a Lie algebra,
called the special linear algebra.
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Classification of Simple Lie Algebras

A Lie algebra is simple if it has no non-trivial ideals and is
not abelian.
A Lie algebra is semisimple if it does not contain any
non-zero abelian ideals.
In particular, a simple Lie algebra is semisimple.
Conversely, it can be proven that any semisimple Lie
algebra is the direct sum of its minimal ideals, which are
canonically determined simple Lie algebras.

Classification
Semisimple Lie algebras over an algebraically closed field have
been completely classified.
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The Group Algebra

Definition
Let G be a group and k a field. The group algebra k [G] is the
set of all linear combinations of finitely many elements of G with
coefficients in k .

The group algebra is a Lie algebra.
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Structure Theorem

Let L(G) be the subspace of C[G] that is the linear span of the
elements ĝ = g − g−1. Then L(G) is a Lie-subalgebra of C[G].

What Lie algebra is it?

Theorem
The Lie algebra L(G) admits the decomposition

L(G) =
⊕
χ∈R

o(χ(1))⊕
⊕

χ∈Sp

sp(χ(1))⊕
⊕
χ∈C

′gl(χ(1))

where R,Sp and C are the sets of irreducible characters of
real, symplectic, and complex types, respectively, and where
the prime signifies that there is just one summand gl(χ(1)) for
each pair {χ, χ̄} from C.
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Example

Example
Consider the group S3. Since

(1,2) = (1,2)−1 (1)

(1,3) = (1,3)−1 (2)

(2,3) = (2,3)−1, (3)

we have
(̂1,2) = (̂1,3) = (̂2,3) = 0̂.

Also, ̂(1,2,3) = (1,2,3)− (1,3,2), so

L(S3) = {0̂, ̂(1,2,3)} = span{ ̂(1,2,3)}.

Thus dim L(S3) = 1.
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Example continued

Example
The group S3 has 3 characters, all of real type, of degrees 1, 1,
2. So, by the above theorem L(S3) decomposes in the following
way:

L(S3) = o(1)⊕ o(1)⊕ o(2).

By adding up the dimensions of the irreducibles in the
decomposition, we get

0 + 0 + 1 = 1.
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My project

L(G) is a Lie-subalgebra of k [G] for any field k .

Question
Can we find a similar structure theorem if we take k to be a
finite field instead of C?

Classification of Lie algebras over finite fields is MUCH
more complicated.
Representations of groups over finite fields is also much
more complex than over an algebraically closed field.



Lie Algebras over Finite Fields

My project

L(G) is a Lie-subalgebra of k [G] for any field k .

Question
Can we find a similar structure theorem if we take k to be a
finite field instead of C?

Classification of Lie algebras over finite fields is MUCH
more complicated.
Representations of groups over finite fields is also much
more complex than over an algebraically closed field.



Lie Algebras over Finite Fields

My project

L(G) is a Lie-subalgebra of k [G] for any field k .

Question
Can we find a similar structure theorem if we take k to be a
finite field instead of C?

Classification of Lie algebras over finite fields is MUCH
more complicated.
Representations of groups over finite fields is also much
more complex than over an algebraically closed field.



Lie Algebras over Finite Fields

My project

L(G) is a Lie-subalgebra of k [G] for any field k .

Question
Can we find a similar structure theorem if we take k to be a
finite field instead of C?

Classification of Lie algebras over finite fields is MUCH
more complicated.
Representations of groups over finite fields is also much
more complex than over an algebraically closed field.


