

Toward Quandle Dichotomy

Robert McGrail, Mona Merling, Mary Sharac, Japheth Wood

Laboratory for Algebraic and Symbolic Computation Reem-Kayden Center for Science and Computation Bard College Annandale-on-Hudson, NY 12504

April 4, 2008

イロト イヨト イヨト イヨト

Quandles

Definition

A **quandle Q** = $\langle Q, \triangleright \rangle$ is a set Q along with a binary operation \triangleright that satisfies the following conditions:

- (Idempotence:) $x \triangleright x = x$.
- (Right Cancellation:) If $x \triangleright r = y \triangleright r$ then x = y.
- (Right Self-Distributivity:) $(x \triangleright y) \triangleright z = (x \triangleright z) \triangleright (y \triangleright z)$.

Define *homomorphism* of quandles and *subquandles* in the usual way.

イロト イヨト イヨト イヨト

Quandles	CSP	CSP's from Quandles	Quandle Dichotomy
Example			

\triangleright	0	1	2
0	0	0	1
1	1	1	0
2	2	2	2

Table: Quandle of size 3

・ロン ・四 と ・ ヨ と ・ モ と

æ

Motivation: Group Conjugation

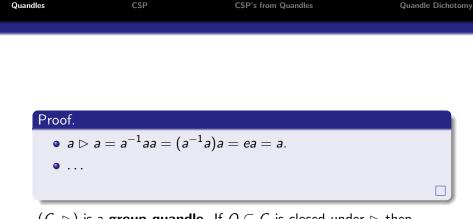
Proposition

Let G be a group. Define the operation \rhd on G as follows. For a, $b\in G$ let

$$a \vartriangleright b = b^{-1}ab$$

Then (G, \triangleright) is a quandle.

-≣->



 (G, \triangleright) is a group quandle. If $Q \subseteq G$ is closed under \triangleright then (Q, \triangleright) is a conjugation quandle.

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Unary Example

\triangleright	0	1	2
0	0	0	0
1	1	1	1
2	2	2	2

Table: Unary Quandle

Note: This is the conjugation quandle of \mathbb{Z}_3 .

< ∃ >

< ≣ >

æ

æ

Quasigroup Example

\triangleright	0	1	2
0	0	2	1
1	2	1	0
2	1	0	2

Table: Quasigroup Quandle

Note: This is a subquandle of (S_3, \triangleright) .

イロト イヨト イヨト イヨト

Quasigroup Example

\triangleright	0	1	2
0	0	2	1
1	2	1	0
2	1	0	2

Table: Quasigroup Quandle

Note: This is a subquandle of (S_3, \triangleright) .

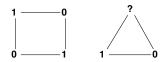
Definition

A quasigroup quandle is a quandle that satisfies left-cancellation, so if $r \triangleright x = r \triangleright y$ then x = y.

2-Color

Definition

A graph G = (V, E) is 2-colorable if one can assign to each vertex $v \in V$ one of two colors, say 0 and 1, in such a way that for each edge $(v, v') \in E$, v and v' have been assigned different colors.



Note: 2-COLOR is tractable.

$2\text{-}\mathrm{COLOR}$ as CSP

Proposition

2-COLOR is a constraint satisfaction problem.

Let $\{0,1\}$ = values, V= variables. For every $(v,v') \in E$, include the constraint

 $\langle (v, v') \in \{(0, 1), (1, 0)\} \rangle.$

Other CSP's: SAT, N-QUEENS, SCHEDULE, SUDOKU

イロト イヨト イヨト イヨト

3

Definition

Let Q be a finite quandle and $R \subseteq Q^n$ be a relation over the set Q of arity n. Then R is **invariant under Q** if

$$(a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n) \in R$$

implies

$$(a_1 \triangleright b_1, a_2 \triangleright b_2, \ldots, a_n \triangleright b_n) \in R.$$

Let Inv(Q) stand for the set of all relations invariant under Q.

イロト イヨト イヨト イヨト

CSP over Q

Definition

Let Q be a quandle. Any CSP over the set Q which employs only relations from Inv(Q) is called a **CSP over Q**.

Definition

A quandle Q is **tractable** if every CSP over Q is solvable in polynomial time. Q is **NP-complete** if at least one CSP over Q is NP-complete.

< 🗇 🕨

 U_2 is the only quandle of size 2.

\triangleright	0	1
0	0	0
1	1	1
Ta	U_2	

- $Inv(U_2)$ includes all relations over $\{0, 1\}$.
- 2-COLOR and 3-SAT are CSP's over U_2 .
- U₂ is NP-complete.

- 4 回 2 - 4 □ 2 - 4 □

æ

æ

Factors and Reductions

Definition

A factor of a quandle Q is a homomorphic image of a subquandle of Q.

- < ∃ >

Factors and Reductions

Definition

A factor of a quandle Q is a homomorphic image of a subquandle of Q.

Theorem

If Q is tractable, then so is every one of its factors.

Factors and Reductions

Definition

A factor of a quandle Q is a homomorphic image of a subquandle of Q.

Theorem

If Q is tractable, then so is every one of its factors.

Corollary

Q is NP-complete if it has an NP-complete factor.

Inner Automorphism Group

For $q \in Q$ define $\sigma_q : Q \rightarrow Q$ by

$$\sigma_q(x)=x\rhd q.$$

Then σ_q is an monomorphism of Q. If Q is finite, σ_q is an automorphism.

< 🗇 🕨

▲ 문 ▶ | ▲ 문 ▶

Inner Automorphism Group

For
$$q \in Q$$
 define $\sigma_q : Q \to Q$ by

$$\sigma_q(x)=x\rhd q.$$

Then σ_q is an monomorphism of Q. If Q is finite, σ_q is an automorphism.

Definition

Let Inn(Q) be the subgroup of Sym_Q generated by $\{\sigma_q | q \in Q\}$. We will call it the *inner automorphism group of* Q.

Connected and Totally Connected Quandles

Definition

A quandle Q is **connected** if the action of Inn(Q) on the set of elements is transitive.

Image: A matrix

-≣->

Connected and Totally Connected Quandles

Definition

A quandle Q is **connected** if the action of Inn(Q) on the set of elements is transitive.

Every connected quandle is a conjugation quandle.

Connected and Totally Connected Quandles

Definition

A quandle Q is **connected** if the action of Inn(Q) on the set of elements is transitive.

Every connected quandle is a conjugation quandle.

Definition

A quandle is **totally connected** if all of its subalgebras are *connected*.

Example of a disconnected quandle: Sharac 5

\triangleright	0	1	2	3	4
0	0	0	0	0	1
1	1	1	1	1	0
2	2	2	2	2	3
3	3	3 4	3 4	3	2
4	4	4	4	4	4
Table: Sharac 5					

The orbits are $\{0,1\}$, $\{2,3\}$, $\{4\}$.

- 4 回 2 - 4 □ 2 - 4 □

Example: Transposition Quandle

All quasigroup quandles are (totally) connected. However, there are connected quandles which are not quasigroups. For example:

\triangleright	0	1	2	3	4	5
0	0	3	4	1	2	0
1	3	1	5	0	1	2
2	4	5	2	2	0	1
3	1	0	3	3	5	4
4	2	4	0	5	4	3
5	5	2	1	4	4 2 1 0 5 4 3	5
	•		ble [.]			

Disconnected Quandles

Theorem

If Q is not connected, then Q is NP-complete.

< ≣⇒

æ

Disconnected Quandles

Theorem

If Q is not connected, then Q is NP-complete.

Proof.

For $q \in Q$, define the homomorphism $H: Q \rightarrow U_2$ as follows.

$$\mathcal{H}(q) = \left\{egin{array}{cc} 0, & q \ \in (x ext{-orbit}) \ 1, & otherwise \end{array}
ight.$$

If Q is not connected, then h is surjective.

イロト イヨト イヨト イヨト

Disconnected Quandles

Theorem

If Q is not connected, then Q is NP-complete.

Proof.

For $q \in Q$, define the homomorphism $H: Q \rightarrow U_2$ as follows.

$$\mathcal{H}(q) = \left\{egin{array}{cc} 0, & q \ \in (x ext{-orbit}) \ 1, & otherwise \end{array}
ight.$$

If Q is not connected, then h is surjective.

Corollary

If Q is not totally connected, then Q is NP-complete.

・ロト ・日本 ・モート ・モート

Conjecture (Quandle Dichotomy)

Let Q be a finite quandle. Then Q is tractable or Q is NP-complete.

< 🗇 🕨

Conjecture (Quandle Dichotomy)

Let Q be a finite quandle. Then Q is tractable or Q is NP-complete.

This is not very daring, considering the following.

Conjecture (Quandle Dichotomy)

Let Q be a finite quandle. Then Q is tractable or Q is NP-complete.

This is not very daring, considering the following.

Conjecture (Feder and Vardi, 1993)

Every CSP is tractable or NP-complete.

Conjecture (Quandle Dichotomy)

Let Q be a finite quandle. Then Q is tractable or Q is NP-complete.

This is not very daring, considering the following.

Conjecture (Feder and Vardi, 1993)

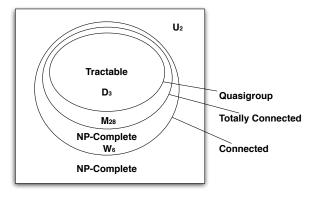
Every CSP is tractable or NP-complete.

This is only moderately daring since failure implies $P \neq NP!$

< 🗇 🕨

æ

The Current State of Quandle Dichotomy



イロト イヨト イヨト イヨト