
GASSMANN EQUIVALENT DESSINS

MONA MERLING

Abstract. A bipartitioned dessin is a pair of permutations (σ0, σ1)
of a finite set. A dessin gives rise to (and is determined by) a
graph embedded in a Riemann surface. This paper studies pairs
of dessins that arise from Gassmann triples of groups (G, H,H ′)
together with pairs g0, g1 of elements in G. We show that the
two dessins have isomorphic monodromy groups, have the same
branching data and the same number of components. Moreover,
the sums of the genera of the components of the two dessins are
the same, but we give an example where the individual genera of
the components of the first dessin differ from the genera of the
components of the second dessin.

1. Introduction

A Gassmann triple (G,H,H ′) consists of a group and two subgroups
that are ”locally conjugate”. The main idea of this paper is to compare
pairs of dessins that arise from these triples. In general, we can look at a
dessin as being defined by a pair of permutations on a set of edges. We
define Gassmann equivalent dessins as being the dessins determined
by the permutations that arise when we let two elements g0 and g1

in G act on the coset spaces G/H and G/H ′. Let σ0 (respectively
σ′0) be the permutations of G/H (respectively G/H ′) arising from g0.
Similarly, let σ−1 (respectively σ′1) arise from g1. Define σ∞ and σ′∞ by
σ0σ1σ∞ = Id and σ′0σ

′
1σ

′
∞ = Id. We prove that the cycle structure for

σj = σ′j for j = 0, 1,∞. This result can be formulated as: Gsaamann
equivalent dessins have the same branching data. The monodromy
groups of Gassmann equivalent dessins, the group generated by the
two permutations determining the dessin, are isomorphic. Moreover,
the number of components of two dessins arising from a Gassmann
triple is equal and the sums of genera of the components of the two
dessins coincide. Even so, the individual genera lists of the two dessins
can be different; we give an example of disconnected dessins where the
genera of the components of the first dessin are not the same with the
ones of the genra of the second dessin.
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2. Background Material

2.1. Group action on sets.

Definition 2.1. An action of a group G on a finite set X is a group
homomorphism φ : G→ Aut(X).

For g ∈ G, we have φ(g) ∈ Aut(X). So, φ(g)(x) ∈ X for all x ∈ X.
For the action of the element g ∈ G on the element x ∈ X we will
simply use the notation gx instead of φ(g)(x).
Alternatively, we can think of the action of a group G on a set X as a
mapping G×X → X (denoted (g, x) → gx) that satisties the following
two conditions:

(1) ex = x , for all x ∈ X;

(2) (στ)x = σ(τx) , for all σ, τ ∈ G and every x ∈ X.

When we have a group G acting on a set X, we call X a G−set.
When a group G acts on a set X, then X breaks up into a disjoint
union of G−orbits. For x ∈ X, OrbG(x) = {gx, g ∈ G} ⊂ X.
If there is an x ∈ X such that OrbG(x) = X, then we say that G acts
transitively on X.

Definition 2.2. For x ∈ X,StabG(x) = {g ∈ G | gx = x}.

The stabilizer of x in G is a subgroup of G.

Definition 2.3. An isomorphism of G− sets X, Y is defined as a
bijection ψ : X → Y such that gψ(x) = ψ(gx) for all x ∈ X, g ∈
G. When there is an isomorphism between these X and Y are called
isomorphic as G-sets, written X ∼=G Y .

Example. If H ⊂ G is a subgroup, let X = G/H, with G acting via
left-translation of left cosets:

(2.1) g(g1H) = gg1H

Then G/H is a transitive G−set. Every transitive G−set is isomorphic
to G/H for some subgroup H ⊂ G.

Definition 2.4. The permutation character of an action of the group
G on a finite set X, also called the fixed point character, is
χX : G→ {0, 1, 2, ...} given by χX(g) = |{x ∈ X | gx = x}|.
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Definition 2.5. Two elements a and b in a groupG are called conjugate
if there is an element g in G such that gag−1 = b.

Definition 2.6. Two subgroups H and H ′ of the group G are called
conjugate if H = gH ′g−1 for some g ∈ G.

Theorem 2.7. The subgroups H and H ′ are conjugate in G iff the
G−sets G/H and G/H ′ are isomorphic as G−sets.

Theorem 2.8. Isomorphic G−sets have the same fixed point charac-
ter. So, conjugate subgroups give rise to equal fixed point characters.

In this paper, I will mainly be concerned with the action of G on
the cosets G/H. The group G acts on the coset space G/H by left
multiplication, i.e. abH = abH. Let me summarize the main points.
The coset action is transitive. Moreover, G/H ∼=G G/H ′ iff H is con-
jugate to H ′. If u ∈ G is any element for which uH ′u−1 = H, then the
map ψ : G/H → G/H ′ defined by ψ(gH) = (gH)u = g(uH ′u−1)u =
(gu)H ′ is a well-defined bijection from G/H to G/H ′ that respects the
G−action and induces an isomorphism of G−sets. So, G/H and G/H′
have equal fixed point characters.

2.2. Gassmann triples.

Definition 2.9. Let G be a group and let H and H ′ be two subgroups
of G. (G,H,H ′) is a Gassmann triple if χG/H(g) = χG/H′(g) for all
g ∈ G.

Requiring χG/H(g) = χG/H′(g) is equivalent to saying that the sub-
groups H,H ′ are locally conjugate, i.e. there is a set bijection b : H →
H ′ where b(h) is conjugate to h in G for all h ∈ H.

The triple (G,H,H ′) is said to be trivial ifH andH ′ are conjugate inG.

Lemma 2.10. If (G,H,H ′) is a Gassmann triple, then |G/H| =
|G/H ′|, so (G : H) = (G : H ′), so |H| = |H ′|.

2.3. Dessins.

Definition 2.11. A bipatitioned graph is a graph with a fixed two
coloring of the vertices (black, white) such that every edge connects
two vertices of different colors.
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Definition 2.12. A bipartitioned dessin d’enfant, or dessin for short,
is a bipartitioned graph with a cyclic counterclockwise ordering given
to the set of edges meeting at each vertex. Work of Grothendieck shows
that, equivalently, a dessin is a finite bipartitioned graph together with
an embedding into a compact oriented Riemann surface.

One way to get a dessin is to choose an ordered pair σ0, σ1 in the
symmetric group Sn. Given the pair σ0, σ1, we create the dessin as
follows: draw a white vertex for each cycle in σ0. If a cycle in σ0 is
(n1, .., nr), then draw r half-edges sprouting from the corresponding
white vertex and label the half-edges counterclockwise n1, .., nr. Sim-
ilarly draw a black vertex for each cycle in σ1 with half-edges labeled
(counterclockwise) by the elements in that cycle. Finally connect the
half-edges with the same label. This produces a bipatitioned graph
with a cyclic counterclockwise ordering of the edges emanating from
each vertex. Each cycle in σ0 represents the cyclic ordering of the
edges meeting at a white vertex, and each cycle in σ1 represents the
cyclic ordering of the edges meeting at a black vertex. Note that the
cycles in σ0 can be recovered from the dessin by writing down the
edge ordering at each of the white vertices, and σ1 can be similarly re-
covered by writing down the edge ordering at each of the balck vertices.

Definition 2.13. Two dessins σ0, σ1 and σ′0, σ
′
1 are isomorphic if there

is τ ∈ Sn that simultaneously conjugates σj to σ′j for j = 0, 1.

Usually one also requires a dessin to be a connected graph. For this
paper we allow dessins to have several components.

Definition 2.14. Let G be a group and H ⊂ G a subgroup of finite
index and let g0, g1 be two elements in G. The dessin D(G/H, g0, g1) is
the dessin determined by the permutations σ0 and σ1 that are defined
by the left G-action of g0 and g1 on G/H.

Definition 2.15. Gassmann equivalent dessins are bipartitioned dessins
D(G/H, g0, g1) and D(G/H ′, g0, g1) that arise from two chosen elements
g0 and g1 in G acting by left multiplication on the coset spaces G/H
and G/H ′ where (G,H,H ′) is a Gassmann triple.

Example. Let G be the simple group of order 168.1 There are two
subgroups of index 7, H and H ′, and together with G they form a
Gassmann triple. (Professor Robert Perlis showed that this is the only
Gassmann triple where the subgroups have index 7 and that there are

1It is known that there is only one simple group of order 168. See literature for
proof.
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none where the index of the subgroups is less than 7). Magma gives
us a presentation of this group as generated by 3 elements x, y and z
that satisfy the following relations:

x2 = Id

y3 = Id

z = xy

z7 = Id

If we let x and y act on the set of 7 cosetsG/H, we get the permutations
σ0 = (1)(2 4)(3)(5)(6 7) and σ1 = (1 2 3)(4 5 6)(7), and if we let x
and y act on the set of 7 cosets G/H ′, we get the permutations σ′0 =
(1)(2 4)(3)(5 7)(6) and σ′1 = (1 2 3)(4 5 6)(7). The two corresponding
dessins for these pairs of permutations are:

Figure 1. Two non-isomorphic Gassmann equivalent dessins

Each edge stands for a coset and each vertex is determined by the pairs
permutations σ0, σ1, and σ′0, σ

′
1 in the way described above.

3. Branching data of Gassmann equivalent dessins

The work of Grothendieck and Belyi showed how dessins correspond
to coverings of the 2-sphere with ramification only above three points
(”0”, ”1” and ”∞”) on the 2-sphere.
Given a dessin σ0, σ1, define σ∞ by the relation σ0σ1σ∞ = 1. Then, σ∞
is determined by σ0 and σ1. When we look at the cycles that determine
a dessin, we can read off the branching data in the following way:
For every i-cycle in σ0 there are i sheets coming in above 0.
For every i-cycle in σ1 there are i sheets coming in above 1.
For every i-cycle in σ∞ there are i sheets coming in above ∞.
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Theorem 3.1. If (G,H,H ′) is a Gassmann triple, then the branching
data for D(G/H, g0, g1) and D(G/H ′, g0, g1) coincide.

Proof. Let σ0 be the permutation of G/H coming from the left multi-
plication by g0 and σ′0 be the permutation of G/H ′ coming from the
left multiplication by g0. Similarly define σ1 and σ′1 as coming from the
action of g1 on G/H and G/H ′. The brancching data of D(G/H, g0, g1)
is just the cycle structure of σ0, σ1 and σ∞. We want to show that σ0

has the same cycle structure as σ′0, σ1 has the same cycle structure as
σ′1, and σ∞ has the same cycle structure as σ′∞.
Since (G,H,H′) is a a Gassmann triple, we know that χG/H(x) =
χG/H′(x) for all x ∈ G.
The action of G on G/H and G/H ′ give two homomorphisms φ :
G → Aut(G/H) and φ′ : G → Aut(G/H ′) defined by φ(g) = σ and
φ′(g) = σ′ where σ is the permutation that permutes the cosets of
H when g acts on G/H and σ′ is the permutation that permutes the
cosets of H ′ when g acts on G/H ′.
Since φ and φ′ are homomorphisms,

φ(gi) = σi and φ′(gi) = σ′i.

Also,

χG/H(gi) = χG/H′(gi),∀i ∈ Z+.

Let cj be the number of j-cycles in σ0 and let dj be the number of
j-cycles in σ′0.

χG/H(g) = c1 = χG/H′(g) = d1

χG/H(g2) = c1 + 2c2 = χG/H′(g2) = d1 + 2d2

.

.

.

Inductively, for every non-negative integer i,

χG/H(gi) =
i∑

k=1

kck = χG/H′(gi) =
i∑

k=1

kdk.

Combining the equations, we get that ci=di for all i ∈ Z+.
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This means that σ and σ′ have the same cycle structure for any element
g ∈ G that acts on the set of cosets of G/H and G/H ′. �

As a result, if we take a Gassmann triple (G,H,H ′) and if we let two
elements g0 and g1 act on G/H and G/H ′ and define σ0, σ1, σ

′
0 and σ′1

by:
φ(g0) = σ0 and φ(g1) = σ1,

φ′(g0) = σ′0 and φ′(g1) = σ′1,

then σ0 and σ′0 have the same cycle structure, and σ1 and σ′1 have the
same cycle structure.
Also, in general, σ∞ = σ−1

1 σ−1
0 , so σ∞ is the permutation that arises if

we let the element g−1
1 g−1

0 act on the set of cosets.
So, since for any g1 and g2 we choose, χG/H(g−1

1 g−1
0 ) = χG/H′(g−1

1 g−1
0 ),

by using the same argument as above, we get σ∞ and σ′∞ have the same
cycle structure.

Conclusion
Since the three permutations that determine two dessins D,D′ arising
from a Gassmann triple have the same cycle structure, the two dessins
have the same branching data. This implies that they have the same
number of vertices of each color. Moreover, the white (black) vertices
of D can be matched with the white (black) vertices of D′, so that
corresponding white (black) vertices have the same number of edges
coming in.

Corollary 3.2. If we let g0 = g1, the resulting Gassmann equivalent
dessins are isomorphic.

Proof. If g0 = g1, then σ0 = σ1 and σ′0 = σ′1. Since by theorem 3.1 σ0

and σ′0 have the same cycle structure, ∃ τ ∈ Sn such that τσ0τ
−1 =

σ′0. So also, τσ1τ
−1 = σ′1. So, by definition 2.13, D(G/H, g0, g1) ∼=

D(G/H ′, g0, g1) �

4. Monodromy Groups

Definition 4.1. The monodromy group of a dessin is the permutation
group < σ0, σ1 > generated by the two permutations σ0 and σ1 that
determine the dessin.

Lemma 4.2. Let (G,H,H ′) be a Gassmann triple. The kernels Kerφ

and Kerφ′ of the two homomorphisms φ : G → Aut(G/H) and φ′ :
G→ Aut(G/H ′) determined by the action of G on G/H and G/H ′ are
the same.
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Proof. The elements in the kernels of φ and φ′ leave all the cosets fixed,
so:

Kerφ = {g ∈ G|χG/H(g) = (G : H)}
Kerφ′ = {g ∈ G|χG/H′(g) = (G : H ′)}

Since χG/H(g) = χG/H′(g) for all g ∈ G, Kerφ = Kerφ′ . �

Theorem 4.3. If (G,H,H ′) is a Gassmann triple the monodromy
groups of D(G/H, g0, g1) and D(G/H ′, g0, g1) are isomorphic.

Proof. Let (G,H,H ′) be a Gassmann triple. Then G acts on the sets
of cosets G/H and G/H ′ giving two group homomorphisms φ : G →
Aut(G/H) and φ′ : G→ Aut(G/H ′).
Let M =< g0, g1 > be the subgroup of G generated by g0 and g1 are
in G. The monodromy groups are by definition, φ(M) =< σ0, σ1 >
and φ′(M) =< σ′0, σ

′
1 >. Since φ and φ′ are homomorphic maps from

G to Aut(G/H) and Aut(G/H ′) and since M is a subgroup of G,
by the fundamental theorem of homomorphism, φ(M) and φ′(M) are
isomorphic to M/Kerφ ∩M , respectively M/Kerφ′ ∩M . Since Kerφ

and Kerφ′ are the same by lemma 4.2, φ(M) and φ′(M) are isomorphic
to each other. �

Example. Let G be the simple group of order 168 and, as we already
pointed out, there are two subgroups of index 7, H and H ′, and to-
gether with G they form a Gassmann triple.

Let φ : G→ Aut(G/H) and φ′ : G→ Aut(G/H ′) be the homomor-
phisms determined by the action of G on G/H and G/H ′.
Let Kφ be the kernel of φ. Then, Kφ is a normal subgroup of G. Since
G is simple, the only two normal subgroups of G are {e} where e is the
identity, and G itself.
Since G acts transitively on the seven cosets G/H, there is g ∈ G that
does not like the identity.So, Kφ 6= G. So,Kφ = {e}. Since Kφ = {e},
φ is injective. Analogously, we show φ′ is injective.
So, φ(M) ∼= M and φ′(M) ∼= M for M ⊂ G. So, the monodromy
groups < σ0, σ1 >= φ(M) and < σ′0, σ

′
1 >= φ′(M) are isomorphic,

independent of how g0 and g1 in G are chosen.

5. Components and Genera

5.1. Components. Before we prove the following lemma, we specify
that saying that < g0, g1 > acts transitively on a set X is equivalent to
saying that < σ0, σ1 > acts transitively on X (because we can look at
the group Aut(X) as acting on X).
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Lemma 5.1. Let X = {e1, e2, ..., en} be the edge set of a dessin. Then
< σ0, σ1 >⊂ Sn acts transitively on X = iff the dessin is connected.

Proof. Suppose < σ0, σ1 > acts transitively on X. Then, ∀ei, ej ∈
X, ∃ σ ∈< σ0, σ1 > such that σei = ej. Each ei ∈ X is an edge of
the dessin, and we define the action of σ0 on ei by a counterclockwise
rotation of the edge ei onto the next edge and the action of σ−1

0 on ei

by a clockwise rotation of the edge ei onto the next edge at a white
vertex. Similarly, we define the actions of σ1 and σ−1

1 by rotations at
a black vertex. So, geometrically, σei = ej means that by a series of
rotations of the edge ei we can get to the edge ej. Since this is true for
all ei, ej ∈ X, the dessin is connected.
Also, if the dessin is connected, we can get by a series of rotations from
the edge ei to the edge ej for all ei, ej in X. �

Example. Let σ0 = (1 2 3) and σ1 = (1 2)(3). The dessin resulting
from σ0 and σ1 is:

Figure 2. Connected dessin

< σ0, σ1 > acts transitively on the set {e1, e2, e3}. We are explicitly
going to show how from every edge one can get any other edge:

e1 = σ1e2

e1 = σ2
0e3 = σ−1

0 e3

e2 = σ1e1

e2 = σ0e3

e3 = σ0e1

e3 = σ2
0e1 = σ−1

0 e2

Corollary 5.2. The number of components of a dessin is the number
of orbits of < σ0, σ1 > on X.
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Proof. The action of each orbit of < σ0, σ1 > under {e1, e2, ..., en} is
transitive, so each orbit determines a connected dessin. �

Example. Let σ0 = (1 2 3)(4 5 6)(7) and σ1 = (1 3 2)(4 6 5)(7).
Then the monodromy group M =< σ0, σ1 > fixes 7, so M is not
transitive on X = {e1, e2, .., e7}. X splits into 3 orbits (3 differents
G − sets):X1 = {e1, e2, e3}, X2 = {e4, e5, e6} and X3 = {e7}. The
corresponding dessin is disconnected and has 3 components:

Figure 3. Disconnected dessin

Theorem 5.3. If (G,H,H ′) is a Gassmann triple, then D(G/H, g0, g1)
and D(G/H ′, g0, g1) have the same number of components.

Proof. Let (G,H,H ′) be a Gassmann triple. Let the fixed point char-
acters of the action of G on G/H and G/H ′ be χ, respectively χ′. So,
χ = χ′.
< g0, g1 >⊂ G, so χ|<g0,g1> = χ′|<g0,g1>.
Let o be the number of orbits of < g0, g1 > on G/H and o′ be the
number of orbits of < g0, g1 > on G/H ′. By Burnside’s formula,

o =
1

| < g0, g1 > |
∑

g∈<g0,g1>

χ|<g0,g1>(g);

o′ =
1

| < g0, g1 > |
∑

g∈<g0,g1>

χ′|<g0,g1>(g).

Since χ|<g0,g1> = χ′|<g0,g1>, o = o′. So, by corollary 5.2, D(G/H, g0, g1)
and D(G/H ′, g0, g1) have the same number of components. �

Corollary 5.4. < σ0, σ1 > is transitive on G/H ⇐⇒ < σ′0, σ
′
1 > is

transitive on G/H ′;
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Proof. If < σ0, σ1 > is transitive on G/H, then o = 1, so o′ = 1. So,
< σ′0, σ

′
1 > is transitive on G/H ′.

Analogously, if < σ0, σ1 > is transitive on G/H ′, then < σ0, σ1 > is
transitive on G/H. �

5.2. Genera.

Theorem 5.5. If (G,H,H ′) is a Gassmann triple, then
∑k

i=1 γi =∑k
i=1 γ

′
i where k is the number of components of D(G/H, g0, g1) and

D(G/H ′, g0, g1), γi denotes the genus of the i-th component of D(G/H, g0, g1)
and γ′i denotes the genus of the i-th component of D(G/H ′, g0, g1)

Proof. We compute the genus of a connected dessin by using the Riemann-
Hurwitz equation

2− 2γ = 2n−
∑

(ep − 1)

where γ=genus, n=number of edges and ep=(number of edges coming
into a branch point).
Let ni and n′i denote the numbers of edges of the i-th component of
D(G/H, g0, g1) and of D(G/H ′, g0, g1) respectively, and let epi

and e′pi

denote the numbers of edges coming into a branch point of the i-th
component of D(G/H, g0, g1) and of D(G/H ′, g0, g1) respectively.
So, applying the Riemann-Hurwitz formula to each component and
summing over k we get:

2k − 2
k∑

i=1

γi = 2
k∑

i=1

ni −
k∑

i=1

(epi
− 1) and

2k − 2
k∑

i=1

γ′i = 2
k∑

i=1

n′i −
k∑

i=1

(e′pi
− 1).

Since the number of edges of D(G/H, g0, g1) is |G/H|, the number
of edges of D(G/H ′, g0, g1) is |G/H ′| and |G/H| = |G/H ′|, it follows

that
∑k

i=1 ni =
∑k

i=1 n
′
i. Also, according to theorem 3.1, the number

of edges coming into each branch point is the same for the two dessins,
so

∑k
i=1(epi

− 1) =
∑k

i=1(e
′
pi
− 1).

It then follows comparing the two equations that
∑k

i=1 γi =
∑k

i=1 γ
′
i.
�

Corollary 5.6. If < σ0, σ1 > is transitive on G/H, γ = γ′ where γ is
the genus of D(G/H, g0, g1) and γ′ is the genus of D(G/H ′, g0, g1).

Proof. By corollary 5.4, since < σ0, σ1 > is transitive on G/H, <
σ′0, σ

′
1 > is also transitive on G/H ′, so by lemma 5.1 D(G/H, g0, g1)
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and D(G/H ′, g0, g1) are connected.
Since each dessin has just one component, if we use the Riemann-
Hurwitz equation, we get γ = γ′. �

In the case of disconnected Gassmann equivalent dessins, even though
the sum of the genera of the components of the first dessin is always
equal to the sum of the genera of the second dessin, the individual
genera of the components of the first dessin might differ from the ones
of the components of the second dessin.

Example. Let G = GL2(F5).

Let H = {
(
a2 x
0 c

)
| a2c 6= 0} and H ′ = {

(
c x
0 a2

)
| a2c 6= 0}.

(G,H,H ′) is a Gassmann triple of index 12.

Let g0 =

(
3 1
3 0

)
and g1 =

(
1 1
1 2

)
.

If we let g0 and g1 act on G/H we get the permutations
σ0 = (1 3 7 4)(2 6 5 8)(9)(10 12)(11) and σ1 = (1 7 3 11 4)(2 9 5 8 6)(10)(12).

If we let g0 and g1 act on G/H ′ we get the permutations
σ′0 = (1 3 10 4)(2 7 12 9)(6)(8)(5 11) and σ′1 = (1 5 10 7 9)(2 4 3 12 11)(6)(8).

The two resulting dessins are the following:

Figure 4. D(G/H, g0, g1)
γ1 + γ2 + γ3 = 1 + 1 + 0 = 2.
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Figure 5. D(G/H ′, g0, g1)
γ′1 + γ′2 + γ′3 = 1 + 1 + 0 = 2.


