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Abstract. Feder and Vardi (1993) discovered a strong correspondence be-

tween finite algebras and computational complexity through the constraint
satisfaction problem (CSP). It allows a classification of algebras according to

their complexity within NP. We focus on quandles, algebras that arise via

knot theory. In particular, we demonstrate that all finite quandles that are
not locally connected are NP-complete. Furthermore, we will present recent

progress on the classification of locally connected quandles.

1. Quandles

Definition 1.1. A quandle Q = 〈Q, .〉 is a set Q along with a binary operation
. that satisfies the following conditions:

• (Idempotence:) x . x = x.
• (Right Cancellation:) If x . r = y . r then x = y.
• (Right Self-Distributivity:) (x . y) . z = (x . z) . (y . z).

Example 1.2. This is the operation table of a quandle of size 3:

B: 0 1 2
0 0 0 1
1 1 1 0
2 2 2 2

Table 1. Quandle of size 3

Right translation by an element of a finite quandle Q defines a permutation on
the underlying set. Hence each column of the operation table of a quandle is a
permutation.

Lemma 1.3. For q ∈ Q define σq : Q → Q by

σq(x) = x B q.

Then σq is an monomorphism of Q. If Q is finite, σq is an automorphism.

Proof. For x, y ∈ Q

σq(x B y) = (x B y) B q

= (x B q) B (y B q) = σq(x) B σq(y).

�

Definition 1.4. Let Inn(Q) be the subgroup of SymQ generated by {σq|q ∈ Q}.
We will call it the inner automorphism group of Q.
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Note that several right translations of an element x by the elements x1,x2,..,xn

are equivalent to permutation multiplication:

((..((x . x1) . x2) . ..) . xn) = (σx1σx2 ...σxn
)(x)

Lemma 1.5. σx.y(i) = (σ−1
y σxσy)(i).

Proof. Define j = σ−1
y (i). So, σy(j) = i.

By the distributive law, (j . y) . (x . y) = (j . x) . y.
So,

σx.y(σy(j)) = σy(σx(j))

= σy(σx(σ−1
y (i)))

So, σx.y(i) = (σ−1
y σxσy)(i). �

Inn(Q) is acting on the set of elements of the quandle Q, so the group action
splits the set into distinct orbits. If the action is transitive, all the elements of the
quandle will lie in the same orbit.

Definition 1.6. A quandle Q is connected if the action of Inn(Q) on the set of
elements is transitive.

Definition 1.7. A quandle is locally connected if all of its subalgebras are connected.

Theorem: If Q is a connected quandle, and θ ∈ ConQ, then each congruence
class of θ has the same size.

Proof. The right-cancellation property of quandles is equivalent to the statement
that unary polynomials of the form fc(x) = x . c (where c is a constant) are per-
mutations of Q. We have assumed that Q is connected, so Inn(Q) acts transitively
on Q.

Take two congruence classes A = a/θ and B = b/θ. By transitivity, there is
an element g ∈ Inn(Q) such that b = g(a). Since Inn(Q) is generated by the
permutations of Q described above, there must be constants c1, . . . , cn ∈ Q so that
g = fcn

◦ fcn−1 ◦ · · · ◦ fc1 ∈ Pol1Q.
Now, take a′ ∈ A. Since a′θa, we have that g(a′)θg(a) = b, so g(a′) ∈ B. Thus

g(A) ⊆ B. Since g is a permutation, we have shown that |A| ≤ |B|. Likewise, we
must have |B| ≤ |A|, so in fact every two congruent classes are of equal size. �

Definition 1.8. A quasigroup quandle is a quandle that satisfies left-cancellation,
so if r . x = r . y then x = y.

Example 1.9. Here is an example of a quasigroup quandle of size 3:

B: 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Table 2. Quasigroup Quandle

Note that in the operation table of a quasigroup quandle not only the columns
are permutations on the underlying set, but the rows are also permutations; so the
operation table is a latin square. Also, note that a quasigroup quandle is connected.
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Definition 1.10. Distance in a quandle is a function d : Q × Q → R ∪ {∞}
defined by

• d(x, x) = 0
• d(x, y) = 1 if x 6= y and there is z ∈ Q such that x . z = y
• d(x, y) = n + 1 if there is w ∈ Q such that d(x,w) = n and d(w, y).
• d(x, y) = ∞ otherwise

Note that the the distance d(x, y) = ∞ for all x, y that are in different orbits of
a disconnected quandle Q. Also, note that if d(x, y) = 1, then there is some q ∈ Q
such that σq(x) = y.

Lemma 1.11. A quandle Q is a quasigroup quandle if and only if d(x, y) = 1 for
all x, y ∈ Q.

Proof. Assume Q is a quasigroup quandle. Let x,∈ Q. Every element in y ∈ Q can
be reached by a right translation of x, so d(x, y) = 1.
Now let x, y ∈ Q and assume d(x, y) = 1. So, there is some z ∈ Q such that
x . z = y which is equivalent to left cancellation. So, Q is a quasigroup. �

Lemma 1.12. Quandles are not locally finite. In fact, the free quandle on two
generators is infinite.

Proof. Let G be the free group on two generators {a, b}, and define x.y := y−1xy.
Then Q = 〈G, .〉 is a quandle.

Now consider the subquandle of Q generated by a and b. The sequence a, a .
b, (a . b) . b, ((a . b) . b) . b, . . . equals a, b−1ab, b−2ab2, b−3ab3, . . . and is infinite.
This shows that Q, a 2-generated quandle, is infinite. Thus the free quandle on
two generators must also be infinite. �

2. Dichotomy

There is only one quandle Q of size 2:

B: 0 1
0 0 0
1 1 1

Table 3. Quandle of Size 2

The following properties hold for this quandle:
• B preserves all relations on {0, 1}.
• Satisfiability is an instance of Inv(Q).
• Q is simple.
• Q is not connected.
• Q is NP-complete.

Since this quandle is NP-complete and since we know that the sublgebras and
homomorphic images of a tractable algebra are tractable, we will use the 2-element
quandle Q to show that a quandle Q′ is NP-complete by constructing a homo-
morphic image of Q′ onto the Q or by showing that Q is a subalgebra of Q′.

Theorem 2.1. If a quandle Q is not connected, then Q contains then 2-element
quandle as a homomorphic image.
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Proof. Since Q is not connected, we can choose x, y ∈ Q in different orbits of Q.
Define a homomorphism from Q to the 2-element quandle (with the multiplication
table above) by

H(q) =
{

0, q ∈ (x-orbit)
1, otherwise

Let a, b ∈ Q. Then note that (a . b) and a are going to be in the same orbit. Also,
H(a) and (H(a) . H(b)) are in the same orbit.

H(a . b) =
{

0 = 0 . H(b) = H(a) . H(b), a ∈ (x-orbit)
1 = 1 . H(b) = H(a) . H(b), otherwise

So, H is indeed a homomorphism. �

Corollary 2.2. If a quandle Q is not locally connected, then Q is NP-complete.

Proof. If Q is not locally connected, there is a subalgebra Q′ of Q which is not connected.
Then, there Q′ has a homomorphic image onto the 2-element quandle which is an
NP-complete algebra, so Q′ and therefore Q are NP-complete. �

Lemma 2.3. If there exist distinct r, x ∈ Q such that r . x = r, then Q contains a
2-element subalgebra.

Proof. Let Q be a quandle and r, x ∈ Q such that r . x = r and x 6= r. Consider
the subalgebra Q′ generated by < x, r >.
We say that q ∈ Q′ starts with r if

• q = r or
• q = q1 . q2 and q1 starts with r.

Note that if q starts with r, then q = r since r . x = r and r . r = r. Define a
homomorphism from Q′ to the 2-element quandle by

H(q) =
{

0, if q starts with r
1, otherwise

Let a, b ∈ Q′. Note that a starts with r if and only if a . b starts with r. So,

H(a . b) =
{

0 = 0 . H(b) = H(a) . H(b), if a starts with r
1 = 1 . H(b) = H(a) . H(b), otherwise

So, H is indeed a homomorphism.
�

Corollary 2.4. If there exist distinct r, x ∈ Q such that r . x = r, then Q is
NP-complete.

Lemma 2.5. A quandle Q is locally connected iff for all r, x ∈ Q, r.x = r implies
that x = r.

Proof. Let Q be a locally connected quandle. Assume that there are r, x ∈ Q,
r . x = r and x 6= r. Then, by lemma 2.3, Q contains the 2-element quandle
which is not connected as a homomorphic image of a subalgebra, a contradiction to
the fact that connectedness is closed under homomorphic images, subalgebras and
products. So, for all r, x ∈ Q, r . x = r implies that x = r.
Now assume that for all r, x ∈ Q, r . x = r implies that x = r. Assume Q is not
locally connected, so we have a not connected subalgebra Q′. Then, by theorem 2.1,
Q′ contains the 2-element quandle as a subalgebra. Looking at its multiplication
table we see that 0 . 1 = 0, but 0 6= 1, so we have a contradiction because the
operation we assumed to be true is not preserved under subalgebra. So, Q must be
locally connected. �
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Lemma 2.6. If Q is connected and there are distinct r, x, y ∈ Q such that r . x =
r . y, then for every w ∈ Q we can find x′, y′ ∈ Q such that w . x′ = w . y′.

Proof. Since Q is connected, we can get to w by doing right translations of r. So,

((..((r . w1) . w2) . ..) . wn) = w

Then, by rearranging terms we get

w . ((..((x . w1) . w2) . ..) . wn) = ((..((r . w1) . w2) . ..) . wn) . ((..((x . w1) . w2) . ..) . wn)
= (((..((r . w1) . w2) . ..) . wn−1) . ((..((x . w1) . w2) . ..) . wn−1)) . wn

= ...

= (r . x)(w1 . (w2 . (... . wn)))

Similarly we get

w . ((..((y . w1) . w2) . ..) . wn) = (r . y)(w1 . (w2 . (... . wn)))

Since r . x = r . y,

w . ((..((x . w1) . w2) . ..) . wn) = w . ((..((y . w1) . w2) . ..) . wn)

Let

x′ = ((..((x . w1) . w2) . ..) . wn)
y′ = ((..((y . w1) . w2) . ..) . wn)

So, we found x′, y′ such that w . x′ = w . y′. �

Note that if there are distinct r, x, y ∈ Q such that r . x = r . y, then we also
have

r . (x . r) = r . (y . r)
r . ((x . r) . r) = r . ((y . r) . r), etc.

If x = x . r or y = y . r, then we are reduced to the case of lemma 2.3, so Q is
NP-complete.
If x = y . r, then

r . y = r . x

= r . (y . r)
= (r . y) . r.

Again, r . y gets fixed by r, so we are reduced to lemma 2.3. The case for y =
x . r is similar. This suggests that if on a row r in the multiplication table of Q
we have a repetition of a value that is different from r itself, we have to have a
second repetition of some value different from r on that row; otherwise Q must be
NP-complete.

Definition 2.7. Given a group G = 〈G; ◦,−1, e〉, define a . b = b−1 ◦ a ◦ b. Then
〈G; .〉 is called a group quandle. A subquandle of G is called a conjugation
quandle.

Lemma 2.8. Let Q be a quandle of size n and define σ : Q → Sn as σ(x) = σx.
If σ is injective, then Q is a conjugation quandle.

Proof. Since σ(x . y) = σx.y = (σ−1
y σxσy), φ is a homomorphism from Q to the

group quandle of Sn. If σ is injective, Q is isomorphic to the conjugation quandle
of σ(Q) ⊆ Sn. �

Lemma 2.9. Every locally connected quandle is a conjugation quandle.
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Proof. Let Q be a locally connected quandle, and assume that Q is not a conjugation
quandle. By lemma 2.8, φ is then not injective where φ : Q → Sn and φ(x) = σx.
So, σx = σy for some x, y ∈ Q. Since we can always relabel elements, assume
without loss of genrality that x = 0 and y = 1. Then the 2-element quandle
is a subalgebra of Q which is not connected, a contradiction. So, Q must be a
conjugation quandle. �


