
Deciding Conjugacy in Thompson’s Group F in
Linear Time

Nabil Hossain, Robert W. McGrail, and James Belk
Laboratory for Algebraic and Symbolic Computation

Bard College

Annandle-on-Hudson, New York, USA

Email: {nh1682,mcgrail,belk}@bard.edu

Francesco Matucci
Département de Mathématiques

Université Paris-Sud 11

Orsay Cedex, France

Email: francesco.matucci@math.u-psud.fr

Abstract—We present an efficient implementation of the
solution to the conjugacy problem in Thompson’s group F,
a certain infinite group whose elements are piecewise-linear
homeomorphisms of the unit interval. This algorithm checks
for conjugacy by constructing and comparing directed graphs
called strand diagrams. We provide a comprehensive description
of our solution algorithm, including the data structure that stores
strand diagrams and methods to simplify them. We prove that our
algorithm theoretically achieves a linear time bound in the size
of the input, and we present a quadratic time working solution.

Keywords—group theory; conjugacy; Thompson’s group F;

I. INTRODUCTION

Given a finitely-presented group G, the conjugacy prob-
lem is the decision problem of determining whether two
elements g, h ∈ G are conjugate, i.e. whether there exists an
element k ∈ G so that g = khk−1. This problem cannot be
solved in general [1], but solutions are known for many classes
of infinite groups, including free groups, braid groups, and so
forth [2], [3]. Moreover, the conjugacy problem in free groups
has been proven to be solvable in linear time [2].

Thompson’s group F is a certain infinite group of
piecewise-linear homeomorphisms of the unit interval. It can
be described by a presentation with two generators and two
relations:

F = 〈x0, x1 | x2x1 = x1x3, x3x1 = x1x4〉
where xn is shorthand for x1−n

0 x1x
n−1
0 for n ≥ 2.

This group is well-known in geometric group theory, and
has been studied extensively. See [4] for a comprehensive
introduction to F .

Guba and Sapir [5], [6] provided a solution to the con-
jugacy problem in Thompson’s group F using graphs called
diagrams. Building upon this solution, Belk and Matucci [7]
introduced certain directed graphs called strand diagrams,
and described a reduction of the conjugacy problem in group F
to isotopy of strand diagrams. In this paper we describe a
further reduction of this problem to isomorphism of planar
graphs and include an implementation of this reduction. This
reduction algorithm takes as input two words in {x0, x1}
of length at most n, and produces two planar graphs in

Francesco Matucci gratefully acknowledges the Fondation Mathematique
Jacques Hadamard (FMJH - ANR - Investissement d’Avenir for the support
received during the development of this work.

������

����
	
���

�	��
	
���

	
���

����
������

�	��
������

Fig. 1. A merge and a split (image taken from [7]).

O(n) time. Given a linear time algorithm for determining
isomorphism of planar graphs, as is theoretically possible
according to Hopcroft and Wong [8], this gives rise to a linear
time algorithm for the conjugacy problem in Thompson’s
Group F . The Hopcroft-Wong algorithm is quite complex, and
no implementation of it currently exists. Therefore, we also
describe a O(n2) Java program for checking conjugacy in F .

For an alternate approach to solving the conjugacy problem
in F , the reader is referred to [9].

II. ANNULAR STRAND DIAGRAMS

All of the material in this section are taken from [7].

Definition 1. A simple annular strand diagram is a finite
directed multigraph drawn on an annulus without edge cross-
ings, having the following properties:

1) Each vertex has degree three, and is either a merge
or a split (see Fig. 1).

2) Every directed cycle winds counterclockwise around
the central hole.

An annular strand diagram is a simple annular strand
diagram along with a finite number of free loops, which are
directed cycles without any vertices.

In [7], Belk and Matucci describe a procedure for obtain-
ing an annular strand diagram corresponding to any element
of F . Specifically, let B(x0), B(x1), B(x−1

0) and B(x−1
1)

denote the four building blocks shown in Fig. 2. Given any
word s1s2 · · · sn in F , i.e. any finite sequence of elements
from {x0, x

−1
0 , x1, x

−1
1 }, the corresponding annular strand

diagram is obtained by gluing together the building blocks
B(s1), B(s2), . . . , B(sn) in counterclockwise order around
the annulus, as shown in Fig. 3. Note that different words for

2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-1-4799-3035-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SYNASC.2013.19

89

2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

978-1-4799-3035-7/14 $31.00 © 2014 IEEE

DOI 10.1109/SYNASC.2013.19

89

(a) B(x0) (b) B(x−1
0) (c) B(x1) (d) B(x−1

1)

Fig. 2. The four building blocks B(x0), B(x−1
0), B(x1), B(x−1

1), corre-
sponding to the generators for F and their inverses.

Fig. 3. Annular strand diagram corresponding to the word x0x0x1. Each
green split is marker for the start of its building block. The red edge glues
the last building block to the first, creating a directed cycle.

the same element of F will correspond to different annular
strand diagrams.

Before stating the conjugacy theorem from [7], we need a
few more definitions:

• A reduction of an annular strand diagram is a simpli-
fication of the directed graph using one of the three
moves shown in Fig. 4. This set of reductions is
confluent and terminating [7], so every annular strand
diagram reduces to a unique normal form. We say that
an annular strand diagram has been reduced if it is a
normal form for this rewriting system. Fig. 5 shows
the reductions performed on an annular strand diagram
until it is reduced.

• Two annular strand diagrams are said to be isotopic
if the second can be obtained from the first by some
continuous motion in the annulus. The edges of the
diagram are not allowed to cross during this motion,

� ��

���

Fig. 4. The three reduction rules for annular strand diagrams. The blue
indicates “empty regions”, i.e. regions which are devoid of vertices and edges,
and do not contain the central hole of the annulus.

Fig. 6. A type II move at the red region splits the connected annular strand
diagram into two connected components.

and no edge may move across the central hole of the
annulus.

We now present the solution to the conjugacy problem in F
described by Belk and Matucci [7].

Theorem 1. Let a = a1 · · · am and b = b1 · · · bn be words
representing elements of Thompson’s group F . Let A and B be
the corresponding annular strand diagrams, and let A′ and B′
be reduced annular strand diagrams obtained by reducing A
and B, respectively. Then a and b represent conjugate elements
of F if and only if A′ and B′ are isotopic.

Our algorithm simplifies annular strand diagrams through
the rewrite rules of Fig. 4 in linear time before performing any
check for isotopy of annular strand diagrams.

III. CHECKING FOR ISOTOPY

During the process of reduction, an annular strand diagram
might become disconnected into several components. For
example, Fig. 6 shows an annular strand diagram that splits
into two components after a type II reduction. Keeping track
of the relative positions of these components is one of the most
difficult aspects of our algorithm.

Because every vertex of an annular strand diagram has
at least one outgoing edge, every component must have at
least one directed cycle. Since directed cycles are required
to surround the central hole, it follows that the connected
components of an annular strand diagram are arranged con-
centrically around the central hole of the annulus. We will use
the following concept to keep track of the concentric order of
these components.

Definition 2. Let A be an annular strand diagram. A cutting
path in A is a path from the central hole of the annulus to the
outside circle such that the cutting path crosses an edge only
from left to right with respect to the orientation of the edge
(see Fig. 7).

The following theorem explains the usefulness of cutting
paths.

Theorem 2. Let A1, ..., Am be the connected components of
a reduced annular strand diagram A′ in concentric order, and
let e1, ..., en be the sequence of edges crossed by a cutting path
for A′. Then e1, ..., en consists of one or more edges from A1

followed by one or more edges from A2 and so forth, ending
with one or more edges from Am.

9090

���

���

�	
�

Fig. 5. Reducing an annular strand diagram to a free loop. The green regions are subject to type I moves, and the red and blue regions are each subject to
type II moves.

To prove this theorem, we require the following lemma on
the structure of reduced annular strand diagrams.

Lemma 1. Let A′ be a reduced annular strand diagram. Then
each component of A′ that is not a free loop lies in a closed
annular region bounded by two directed cycles.

Proof: Let Ai be a component of A′ that is not a free
loop, and consider any directed cycle of Ai. If this cycle were
to have both merges and splits, then at some point there would
be a merge followed by a split, which would be subject to a
type II reduction. Since A′ is reduced, it follows that every
directed cycle in Ai consists solely of either merges or splits.
Therefore, all of the edges attached to the outermost directed
cycle of Ai must lie on the inside of the cycle, and all of the
edges attached to the innermost cycle of Ai must lie on the
outside of the cycle, so Ai lies in the annular region between
these two cycles.

Proof of Theorem 2: Clearly the cutting path must cross
each of the components Ai at least once. Moreover, because
of the edge crossing rules for cutting paths, a cutting path can
cross a directed cycle only one time. Since every component
is either a free loop or is bounded by two directed cycles, the
result follows.

����	
� ���

���� 	
 �

����

����
� �	�����

�������

����	
� ���

���� 	
 �

����

����
� �	�����

��	 �������

Fig. 7. The cutting path crosses each edge in the annular strand diagram
from left to right.

Our algorithm keeps track of a cutting path for the annular
strand diagram of each element, modifying the path as the
annular strand diagram is reduced. After reduction, we use
Theorem 2 to reconstruct the concentric order of the com-
ponents, a necessary step in checking for isotopy. Indeed,
because of the concentric arrangement of the components, we
can check isotopy for each pair of components separately:

Proposition 1. Let A be an annular strand diagram with
components A1, . . . , Am in concentric order, and let B be
an annular strand diagram with components B1, . . . , Bn in
concentric order. Then A and B are isotopic if and only if
m = n and Ai is isotopic to Bi for each i.

We use the following theorem to check isotopy for con-
nected components:

Theorem 3. Let Ai and Bi be connected annular strand
diagrams. Then Ai and Bi are isotopic if and only if there
exists an isomorphism ϕ : Ai → Bi of directed multigraphs
satisfying the following conditions:

1) For every split vertex v in Ai, the isomorphism ϕ
maps the left output of v to the left output of ϕ(v),
and the right output of v to the right output of ϕ(v).

2) For every merge vertex v in Ai, the isomorphism ϕ
maps the left input of v to the left input of ϕ(v), and
the right input of v to the right input of ϕ(v).

Proof: Observe that an isomorphism ϕ satisfies conditions
(1) and (2) if and only if it preserves the counterclockwise
order of the edges incident on each vertex. That is, ϕ satisfies
(1) and (2) if and only if ϕ respects the “rotation systems”
associated to Ai and Bi (see [10]). Therefore, there exists an
isomorphism ϕ satisfying (1) and (2) if and only if Ai and Bi

are isotopic as directed graphs on a sphere.

9191

To relate isotopy on the sphere with isotopy on the annulus,
observe that the region of Ai containing the central hole
is the only region whose boundary is a counterclockwise
directed cycle. Similarly, the region of Ai corresponding to
the outside of the annulus is the only region whose boundary
is a clockwise directed cycle. The same holds true for Bi.
Therefore, given any isotopy from Ai to Bi on the sphere, the
regions containing the central holes must correspond, as must
the outer regions. It follows that Ai and Bi are isotopic on the
sphere if and only if they are isotopic on the annulus.

IV. THE ALGORITHM

In this section, we describe and analyze the algorithm for
the conjugacy problem in F . This algorithm refines the solution
stated in Theorem 1 to achieve the best possible running time.

The steps in the algorithm are summarized in Fig. 8. We
believe that the following key points will make it easier for
the reader to understand the analysis of the algorithm presented
later in this section:

1) The two inputs w1 and w2 are strings in the alphabet
{x0, x1, x

−1
0 , x−1

1 }.
2) The algorithm keeps track of a cutting path. After

the annular strand diagrams are reduced, their con-
nected components are labeled in concentric order
using the sequence of edges in this cutting path (see
Theorem 2).

3) We reduce the problem of determining whether two
reduced annular strand diagrams are isotopic to the
problem of determining whether two planar graphs
are isomorphic. This is done by applying a one-to-one
encoding on each connected component to convert
it to a connected planar graph. The purpose of this
step is to apply the O(|V |) algorithm proposed by
Hopcroft and Wong [8] for the isomorphism problem
in planar graphs to make our algorithm achieve a
linear running time. Whether w1 and w2 represent
conjugate elements is then decided by using Propo-
sition 1.

Theorem 4. Given two input words w1 and w2 in 〈x0, x1〉

Fig. 8. Overview of the algorithm for the conjugacy problem in Group F

representing two elements of F , the proposed algorithm for
the conjugacy problem decides whether the two elements are
conjugate in O(n), where n = |w1|+ |w2|.

The rest of this section proves this theorem.

A. The Data Structure

Table I shows the data structure for representation and
manipulation of annular strand diagrams.

Below we discuss the data structure, with particular em-
phasis on key fields and methods.

Class: Edge

This class holds edges in annular strand diagrams.

1) The field type is an array of two integers that
records the type to which the edge belongs (see
Section IV-D for a discussion of “type”). In this array,
the first integer denotes the input type and the second
integer denotes the output type for the edge. These
integers can be the following:

• 0 → free loop
• 1 → left input or left output
• 2 → right input or right output

2) The node field denotes the container node in the
linked list representing the cutting path to which the
edge belongs.

3) Given an edge e1 with source vertex s, the
combineEdge() method takes an edge e2 with
target vertex t as input, and then merges the two
edges. As a result, both e1 and e2 are the same edge
with source vertex s, target vertex t, and their type
and node fields are modified if required.

Class: Vertex

The Vertex class represents merges and splits.

The field type denotes the vertex type, which can be either
“merge” or “split”. Using the type field, we can safely decide
which of the four Edge fields are valid for a vertex, as shown
in Table II.

TABLE II. THE EDGE OBJECTS ASSOCIATED WITH CERTAIN VERTEX

TYPES.

merge split

leftParentEdge � �
rightParentEdge � �
leftChildEdge � �

rightChildEdge � �

Note that the Vertex data structure keeps track of the
counterclockwise order of the edges (i.e. the rotation system)
since it keeps track of the left and right parents of a merge, and
similarly the left and the right children of a split. Therefore,
by Theorem 3, this data structure is sufficient to keep track of
the isotopy class of the annular strand diagram.

9292

TABLE I. THE JAVA MODEL OF THE DATA STRUCTURE USED IN THE ALGORITHM. NOTE THAT ALL THE LINKED LISTS ARE DOUBLY LINKED.

Class Vertex Edge Annular Graph

type: String source: Vertex vertices: LinkedList <Vertices> vertices: List<Vertex>
leftParentEdge: Edge target: Vertex stackReduceSplits: Stack<Vertex> edges: List <Edge>
rightParentEdge: Edge ID: Integer cuttingPath: LinkedList<Edge>
leftChildEdge: Edge type: Integer

Fields rightChildEdge: Edge isFreeLoop: Boolean
ID: Integer node: Node<Edge>
node: Node<Vertex> flagged: Boolean
isPaired: Boolean
correspondent: Vertex

getLeftParent(): Vertex combineEdge(Edge) reduce()
Methods getRightParent(): Vertex makeFreeLoop() getComponents()

getLeftChild(): Vertex encodeToPlanarGraph()
getRightChild(): Vertex

Class: Graph

The Graph data structure is used to hold the planar graphs
that are generated from the components of reduced annular
strand diagram (discussed in Section IV-D). A list of the
vertices and a list of the undirected edges are sufficient to
represent these planar graphs.

Class: Annular

This data structure represents elements of F in annular
strand diagram forms.

1) An Annular object is constructed by going through
the input word from left to right, and creating and
gluing the corresponding building blocks together.

2) The stack stackReduceSplits stores vertices
that may be involved in reduction (discussed in
Sections IV-B and IV-C).

3) The field cuttingPath is a linked list that stores a
sequence of edges in a particular cutting path in the
annular strand diagram.

4) The reduce() method performs all the possible re-
duction moves on an annular strand diagram, thereby
reducing it.

5) The getComponents() method returns a concen-
tric ordered list of the connected components in the
annular strand diagram. These connected components
are also Annular objects.

6) The method encodeToPlanarGraph() encodes
connected components to planar graphs, which are
Graph objects.

Now we begin a thorough discussion and analysis of the
algorithm for the conjugacy problem.

B. Annular Strand Diagram Generation

Each building block for creating an annular strand diagram
has a constant number of vertices and edges (see Fig. 2).
Therefore, construction of the annular strand diagram corre-
sponding to the input word requires O(n) vertices and edges,
and O(n) gluing of the building blocks, proving that creation
of an annular strand diagram is O(n). Note the following key
points:

1) During the construction of an annular strand diagram,
we put all the splits at the gluing points into a
stack called stackReduceSplits as we know
that these splits mark the regions of all possible

reductions that can be performed on the annular
strand diagram at that instant. To be precise, these
regions are exposed to type II reduction moves. For
instance, in Fig. 3, these are the green splits.

2) The edge that glues the last building block to
the first is added to a doubly linked list called
cuttingPath that represents the cutting path
which the algorithm will dynamically keep track of.

C. Reduce

We now analyze the reduce() method and prove that
it takes O(n) to reduce an annular strand diagram. For our
purposes, it suffices to show that the cutting path update, the
number of reductions, and the number of checks for reductions
collectively take O(n).

Cutting Path Update: Fig. 9 shows the strategy we
employ to update the cutting path. Reductions are performed
by first removing edges and vertices, and then combining
edges using combineEdge(). Each new edge created after
a reduction represents both the edges that were combined
to create the new edge. This means that in the case of a
reduction I, we do not need to worry about updating the
cutting path if it crosses edges e1 or e4 prior to the reduction
because the reduction will update the cutting path accordingly.
Similarly, in the case of a reduction II, we do not need to
update the cutting path if it does not cross e3 prior to the
reduction. Hence, the only cases where the algorithm has to
update the cutting path are the cases shown in Fig. 9. Also
recall that the node field for edges ensures that each edge
knows whether it is in the cutting path. Therefore, it is easy to
see that deciding whether the cutting path needs to be updated
during a reduction, and also updating the cutting path during
a reduction both take O(1). Fig. 10 shows the edges in an
annular strand diagram that the cutting path intersects before
and after the annular strand diagram is reduced.

Number of Reductions: Observe that each type I or type II
move deletes two vertices from an annular strand diagram.
Since the number of vertices in the annular strand diagram
after its creation is O(n), it follows that the number of type I
or type II moves is also O(n). The number of type III moves
is also bounded by O(n) because each of these moves merge
two concentric edges, and there can be at most O(n) concentric
edges in the annular strand diagram.

Number of Checks for Reductions: Observe that a
reduction can create a new region of reduction nearby. We
perform reductions locally and keep track of all possible

9393

�

��

�

� �

�
�

(a) (b) (c)

Fig. 10. Status of a cutting path (a) after closing a strand diagram (crosses edge ec), (b) after performing a type II reduction, and (c) after the annular strand
diagram is reduced. The numbers denote the order in which the cutting path crosses the edges of the annular strand diagram.

�

��

�� ��

��

�� ��
��

�� ��

��

�� ��

��

��

��

��

(a) reduction I (b) reduction II

���

(c) reduction III

Fig. 9. Update of the cutting path (colored red) for each reduction move.

regions in which new reductions may appear as a result of
a local reduction. Notice that both type I or type II moves
happen around a split. We use stackReduceSplits to
store all possible splits that may be involved in these reduction
moves. After any of these reduction moves are performed, we
push onto stackReduceSplits the splits connected to the
newly created edges (for instance, the splits connected to e1
in Fig. 9.(a) after the reduction) because such a split might
be now exposed to a reduction move. In this way we can
check for all possible type I and type II moves. Observe that
these reductions involve a constant number of pushes onto
the stack. Because there are O(n) reductions, there are at
most O(n) pushes onto the stack, and hence O(n) checks for
reduction I and II. We perform the type III moves after all
possible type I and type II moves are performed. The type III
moves are detected by finding all the adjacent free loops in
the cutting path, which involve O(n) checks since the cutting
path can have at most O(n) edges in it. This proves that the
reduce() method takes O(n).

After the annular strand diagrams are reduced, the con-
nected components are detected in concentric order.

Connected Component Labeling: Recall that the data
structure for edges holds the source and target vertices, and
the data structure for vertices holds the connected edges.
Therefore, given the cutting path for a reduced annular strand
diagram, for each edge that meets the cutting path in order,
we can perform a breadth first search along both directions of
the edge to discover the connected component to which the
edge belongs. Because all the components collectively have a

sum of vertices and edges bounded by O(n), it follows that
all connected components are identified in concentric order in
O(n).

D. Encoding to Planar Graphs

In this section, we explain and analyze the part of the
algorithm which reduces the problem of determining isotopic
annular strand diagrams to the problem of determining isomor-
phic planar graphs.

Theorem 5. Any two connected, reduced annular strand
diagrams A′1 and A′2 can be encoded into two planar graphs
p1 and p2 respectively such that A′1 and A′2 are isotopic if and
only if p1 and p2 are isomorphic.

Sketch of Proof: To prove the theorem above, it suffices
to demonstrate an encoding that is one-to-one. First we will
describe the encoding, and then show that it is one-to-one.

We will now describe the function φ that encodes con-
nected, reduced annular strand diagrams into planar graphs.
First, notice that there are three possible input types for an
edge, namely the left input or the right input to a merge, or
the lone input to a split (see Fig. 1). Similarly an edge can
have three possible output types. Hence there are nine different
input-output combinations for an edge. In addition, an edge can
be a free loop. Therefore, we have ten different types of edges.
We provide unique encodings of each type of edge, as shown
in Table III that φ will make use of. Note that the type to which
an edge e belongs uniquely identifies the corresponding planar
graph for the edge using the number of edges created between
the vertices u and v2 in the corresponding planar graph (see
Table III).

Let φ : X → G be a function that maps the set of
connected, reduced annular strand diagrams X to the set of
planar graphs G. Assume that E = {e1, e2, ...en} is the edge
set of A′ ∈ X . To obtain pA′ = φ(A′), follow the steps below:

1) Create a null graph pA′ .
2) Copy all the vertices from A′ to pA′ .
3) For each edge e ∈ E, identify its edge type in

Table III, and perform the appropriate encoding of
e.

The function φ uniquely encodes its input annular strand
diagram to a planar graph. Moreover, this process is one-to-
one. Indeed if two (reduced) annular strand diagrams encode
the same planar graph via φ, then it is easy to recover

9494

TABLE III. DIFFERENT TYPES OF EDGES IN THE ANNULAR STRAND

DIAGRAM, AND THEIR ENCODINGS TO PLANAR GRAPHS

���� ����

�

��

��

���
	
 �� �! ��

��

�����
���� 	

�� �! ��

��

��
���

�	�� 	

�� �! ��

��

��

���� ���
	

�� �! ��

��

��

���� ���
���� 	

�� �! ��

��

��
���� ���
�	�� 	

�� �! ��

��

��

�	�� ���
	

�� �! ��

��

��

�	�� ���
���� 	

�� �! ��

��

��

�	�� ���
�	�� 	

�� �! ��

the original vertices and determine the left and right inputs
of corresponding merges, and the left and right outputs of
corresponding splits. This means that both annular strand
diagrams have the same rotation systems. Theorem 3 asserts
that they must be isotopic.

Analysis of the Encoding Algorithm: Recall that all the
connected components together have a total of O(n) vertices
and edges. Because the encoding creates a constant number of
vertices and edges for each edge in E, it follows that φ creates
a planar graph with O(n) vertices and edges.

E. Determining Isotopy

To check whether two reduced annular strand diagrams
are isotopic, we use Proposition 1 and Theorem 5. In other
words, all corresponding planar graphs from both annular
strand diagrams are compared to determine whether they are
isomorphic using the O(V) algorithm for the isomorphism
problem in planar graphs proposed by Hopcroft and Wong [8],
where V is the number of vertices in the input. Note that their
algorithm accepts planar graphs with loops and multiple edges
between vertices. Because the total number of vertices from
our planar graph encodings are collectively bounded by O(n),
it follows that all the checks for isomorphism between planar
graphs take O(n).

This concludes the proof of Theorem 4, confirming that the
algorithm for the conjugacy problem is linear in the input size.
A Java-style pseudocode version of the algorithm is shown in
Algorithm 1.

Input: String w1, String w2

Output: Whether w1 and w2 represent conjugate
elements

1 for w in {w1, w2} do
2 Annular asd = new Annular(w)
3 asd.reduce()
4 List<Annular> components =

asd.getComponents(asd.cuttingPath)
5 Pw = new List<Graph>()
6 for c in components do
7 Pw.add(c.encodeToPlanarGraph())
8 end
9 end

10 if Pw1 .size() �= Pw2 .size() then
11 return false
12 for i = 0→ Pw1 .size()− 1 do
13 Graph p1 = Pw1

.get(i)
14 Graph p2 = Pw2

.get(i)
15 if !(isIsomorphic(p1, p2)) then

// the linear method from [8]
16 return false
17
18 end
19 return true

Algorithm 1: Algorithm for the conjugacy problem in F .

F. Implementation

To the best of our knowledge, the linear time algorithm
for the isomorphism problem in planar graphs proposed in [8]

9595

has not been implemented yet. This is due to the complicated
design of the algorithm. Moreover, the authors of [8] stated
that this algorithm is not practical. As a result, we have not
attempted an implementation of this algorithm, and instead
programmed a direct isotopy search as a substitute for the
following steps:

1) planar graph encoding of each component in the two
annular strand diagrams, and

2) checking for isomorphism between all corresponding
pairs of planar graph encodings.

Our implementation, called ConjugacyF, is a brute force im-
plementation of Theorem 3. In particular, it substitutes the two
steps above with a method that checks the rotation systems of
the two reduced annular strand diagrams to determine whether
the graphs are isotopic. This involves fixing a reference vertex
vr in one of the reduced annular strand diagrams A′1, and
then for each vertex vc in the other reduced annular strand
diagram A′2 as a possible correspondent of vr, a breadth first
expansion is performed in both A′1 and A′2 along the edges
connected to each of vr and vc in counterclockwise order. If
any of these expansions produces the same graphs, then A′1
and A′2 represent conjugate elements. In the worst case (when
the graphs are not isotopic), this algorithm performs two linear
time expansions for each vertex vc in A′2. Hence ConjugacyF
is O(n2).

V. CONCLUSION AND FUTURE WORK

We presented a linear time reduction of the conjugacy
problem in Thompson’s Group F to the isomorphism problem
of planar graphs using directed graphs called annular strand
diagrams, along with data structures for efficient storage and
manipulation of the associated mathematical objects. Given a
linear time algorithm for the isomorphism problem of planar
graphs [8], this leads to a linear time algorithm for the
conjugacy problem in F . Moreover, the conjugacy problem
in F requires linear time, so such an algorithm represents the
best runtime generally speaking.

Due to the impractical nature of the linear algorithm for the
isomorphism problem in planar graphs [8], we implemented
a quadratic solution that directly determines whether two
reduced annular strand diagrams are isotopic, and we made
the software publicly available. This is the first public software
implementation of an algorithm for the conjugacy problem in
F . It is our hope that our software will be useful to the research
community in Thompson’s Groups.

For future work, we believe that it would not be too hard
to modify our software to create algorithms for the conjugacy
problems in the other two Thompson’s Groups, namely V
and T . The cutting path used in the algorithm for F is
representative of the cutting class [7] used in solving the
conjugacy problem in V . However, the algorithm for V is not
expected to be linear because checking whether two cutting
paths represent the same cutting class might require Gaussian
elimination [11], which is worse than linear.

REFERENCES

[1] P. S. Novikov, “Unsolvability of the conjugacy problem in the theory
of groups.(Russian),” Izv. Akad. Nauk SSSR. Ser. Mat, vol. 18, pp. 485–
524, 1954.

[2] K. Madlener and J. Avenhaus, “String matching and algorithmic prob-
lems in free groups.” Revista colombiana de matematicas, vol. 14, pp.
1–16, 1980.

[3] F. A. Garside, “The braid group and other groups,” The Quarterly
Journal of Mathematics, vol. 20, no. 1, pp. 235–254, 1969.

[4] J. W. Canon, W. J. Floyd, and W. R. Parry, “Introductory notes on
Richard Thompson’s groups,” Enseignement Mathématique, vol. 42, pp.
215–256, 1996.

[5] V. Guba and M. V. Sapir, Diagram groups. AMS Bookstore, 1997,
vol. 620.

[6] V. S. Guba and M. V. Sapir, “On subgroups of R. Thompson’s group
F and other diagram groups,” Sbornik: Mathematics, vol. 190, no. 8, p.
1077, 1999.

[7] J. Belk and F. Matucci, “Conjugacy and dynamics in Thompson’s
groups,” Geometriae Dedicata, pp. 1–23, 2013.

[8] J. E. Hopcroft and J.-K. Wong, “Linear time algorithm for isomorphism
of planar graphs (preliminary report),” in Proceedings of the sixth
annual ACM symposium on Theory of computing. ACM, 1974, pp.
172–184.

[9] I. Short and N. Gill, “Conjugacy in Thompson’s group F,” Proceedings
of the American Mathematical Society, vol. 141, pp. 1529–1538, 2013.

[10] J. L. Gross and S. R. Alpert, “The topological theory of current graphs,”
Journal of Combinatorial Theory, Series B, vol. 17, no. 3, pp. 218–233,
1974.

[11] J. Edmonds, “Systems of distinct representatives and linear algebra,” J.
Res. Nat. Bur. Standards, Sect. B, vol. 71, no. 4, pp. 241–245, 1967.

9696

